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I

ABSTRACT

The state-of-the-art methods in natural language processing (NLP) increasingly
rely on large pre-trained transformer models. The strength of the models stems
from their large number of parameters and the enormous amounts of data used
to train them. The datasets are of a scale that makes it difficult, if not impos-
sible, to audit them manually. When unwieldy amounts of potentially sensitive
data are used to train large machine learning models, a difficult problem arises:
unintended memorization of the training data.

All datasets—including those based on publicly available data—can contain
personally identifiable information (PII). When models memorize these sensi-
tive data, they become vulnerable to privacy attacks. Very few datasets for NLP
can be guaranteed to be free from sensitive data. Consequently, most NLP mod-
els are susceptible to privacy leakage. This susceptibility is especially concern-
ing in clinical NLP, where the data typically consist of electronic health records
(EHRs). Leaking data from EHRs is never acceptable from a privacy perspec-
tive. This doctoral thesis investigates the privacy risks of using sensitive data and
how they can be mitigated—while maintaining data utility.

A BERT model pre-trained using clinical data is subjected to a training data
extraction attack. The same model is used to evaluate a membership infer-
ence attack that has been proposed to quantify the privacy risks of masked lan-
guage models. Multiple experiments assess the performance gains from adapt-
ing pre-trained models to the clinical domain. Then, the impact of automatic
de-identification on the performance of BERT models is evaluated for both pre-
training and fine-tuning data. Finally, synthetic corpora for training models to
detect PII are generated using domain-adapted generative language models. The
quality of these corpora, and the parameters affecting their utility, are explored
by training and evaluating BERT models.

The results show that domain adaptation leads to significantly better perfor-
mance on clinical NLP tasks. They also show that extracting training data from
BERT models is difficult and suggest that the risks can be further decreased
by automatically de-identifying the training data. Automatic de-identification
is found to preserve the utility of the data used for pre-training and fine-tuning
BERT models. However, we also find that contemporary membership inference
attacks are unable to quantify the privacy benefits this technique. Similarly, high-
quality synthetic corpora can be generated using limited resources, but further
research is needed to determine the privacy gains from using them. The results
show that automatic de-identification and training data synthesis reduces the pri-
vacy risks of using sensitive data for NLP while preserving the utility of the data,
but that these privacy benefits may be difficult to quantify.
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SAMMANFATTNING

Här kommer det finnas en svensk sammanfattning.
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CHAPTER 1

INTRODUCTION

Recent advances in natural language processing (NLP) have become increas-
ingly reliant on large pre-trained language models. These models are built using
variations of the transformer architecture (Vaswani et al., 2017) and were popu-
larized with the introduction of the BERT1 models (Devlin et al., 2019). Aside
from architectural advances, the success of these models has also been driven by
rapid increases in scale—both in terms of their increasingly enormous number
of parameters and the vast amounts of training corpora used to train them.

Pre-trained language models are applicable to many NLP problems in many dif-
ferent domains. The research underlying this doctoral thesis was conducted at
the Department of Computer and Systems Sciences, where there is a vibrant
research community working with clinical data. NLP can be used to detect ad-
verse drug events (Henriksson, 2015), to automatically assign diagnosis codes
to discharge summaries (Remmer et al., 2021), and in many other applications.
Clinical NLP can improve the quality and safety of care while also alleviating
the administrative burden imposed on doctors. However, state-of-the-art clinical
NLP relies on large pre-trained language models and large corpora of clinical
text. Clinical text, usually in the form of electronic health records (EHRs), can
contain personally identifiable information (PII). This is a problem because, in
addition to tackling NLP tasks effectively, pre-trained language models are sus-
ceptible to privacy attacks that can reveal information about their training data.

1BERT stands for Bidirectional Encoder Representations from Transformers, partially to con-
tinue the trend of naming models after TV characters (Lewis et al., 2020; Peters et al., 2018;
Zanzotto et al., 2020).
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The two main types of attacks are training data extraction attacks and member-
ship inference attacks. Successful training data extraction attacks can extract
parts of the corpus used to train a language model. Membership inference at-
tacks, on the other hand, try to establish whether a given data point was or was
not part of a model’s training corpus. This attack can reveal sensitive informa-
tion about a patient’s medical history but has also been proposed as a proxy for
quantifying the privacy risks of machine learning models (Mireshghallah et al.,
2022; Murakonda & Shokri, 2020). This doctoral thesis explores both training
data extraction and membership inference attacks on clinical BERT models—
which are well-suited for the types of classification tasks typical of clinical NLP
(Naguib et al., 2024).

Multiple experiments in this thesis confirm that domain adaptation is important
to achieve state-of-the-art performance in clinical NLP tasks. The thesis then ex-
plores how to decrease the privacy risks of using clinical BERT models. First, it
explores how the privacy risks of BERT models can be mitigated using automatic
de-identification. Automatic de-identification is a privacy-preserving technique
that decreases the privacy risks of NLP models by automatically detecting and
sanitizing PII in their training data. Sanitization can be done in multiple ways,
and one popular approach is to replace PII with realistic surrogates (Dalianis,
2019). Even though automatic de-identification can make data safer, the named
entity recognition (NER) models used to detect PII are imperfect. Sometimes,
the NER models fail to detect PII, which leads to sensitive data remaining in
the dataset. At other times, these models incorrectly classify safe entities as PII,
introducing noise into the data.

The thesis also contains experiments that involve training BERT models on syn-
thetic versions of a clinical corpus. These synthetic corpora are created by train-
ing a generative language model to produce text similar to the original corpus.
Once these unannotated data are generated, a separate encoder model trained
using the original corpus is used to add labels. This process is repeated using
various amounts of sensitive data, and the quality of the synthetic corpora is
assessed by training and evaluating models using them.

This thesis shows that automatic de-identification can decrease the privacy risks
of training machine learning models using clinical data without harming the per-
formance of the resulting models. This means that the noise introduced by im-
perfect NER models when they are used to remove large amounts of PII does not
disturb training. We also show that membership inference attacks fail to capture
the privacy benefits of automatic de-identification, which means that they can-
not currently be used to compare automatic de-identification to other privacy-
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preserving techniques. The results also show that synthetic corpora can be used
in place of real data without incurring a large drop in performance. Further-
more, such synthetic corpora can be created using small datasets as long as the
machine-annotating model is sufficiently capable. However, similarly to auto-
matically de-identifying data, there is a lack of rigorous methods for quantifying
the privacy benefits of using synthetic corpora.

1.1 RESEARCH QUESTIONS

The main research question of this thesis concerns how the privacy risks inher-
ent in training large language models with clinical data can be mitigated using
privacy-preserving techniques. The six papers in the thesis cover various parts
of this overarching theme. Paper I explores the extent to which BERT models
trained on clinical data leak information about the individuals described in the
training data. Specifically, the paper covers the risks of leaking sensitive informa-
tion through a training data extraction attack. Paper II examines a state-of-the-art
membership inference attack targeting BERT models and evaluates if it can be
used to quantify the privacy benefits of automatic de-identification. Papers III,
IV, and VI evaluate whether domain-adaptive pre-training with sensitive clinical
data is worthwhile as opposed to using safer general-domain models. Papers IV
and V investigate the impact of automatic de-identification on the utility of train-
ing data for pre-training and fine-tuning purposes, respectively. Finally, Paper
VI analyzes how synthetic training data can be generated from clinical corpora
while limiting the amount of data that are exposed.

Privacy risks

RQ 1.1

RQ 1.2

Paper I

Paper II

Privacy
preservation

RQ 2.1

RQ 2.2

RQ 2.3

Paper III

Paper IV

Paper V

Paper VI

Figure 1.1: Answering the overarching research question of this thesis required
addressing four subquestions. These fall into two themes, and the relation between
the themes, the subquestions, and the papers that address them is illustrated.



4 CHAPTER 1.

These research questions form two overarching themes: assessing privacy risks
and exploring the trade-off between privacy and utility. In total, these themes
produce five subquestions that the six papers address. The relation between the
papers and the subquestions is illustrated in Figure 1.1. The themes and their
subquestions are listed below:

PRIVACY RISKS

RQ 1.1 Does the risk of clinical language models leaking information increase
when the quality of their generated data improves?

RQ 1.2 Do state-of-the-art membership inference attacks accurately quantify the
privacy-preserving benefits gained from automatically de-identifying pre-
training data for clinical language models?

PRIVACY PRESERVATION AND DATA UTILITY

RQ 2.1 Is clinical domain-adaptation of pre-trained language models necessary to
reach state-of-the-art results in clinical NLP?

RQ 2.2 How is the performance of clinical language models affected by using
automatically de-identified training data for both pre-training and fine-
tuning?

RQ 2.3 How can sensitive clinical data be used as efficiently as possible when
creating synthetic corpora for clinical NLP?



PART I

BACKGROUND

This thesis concerns the intersection between privacy-preserving machine learn-
ing, natural language processing, and clinical text mining. In this chapter, we
will explore these topics, lay the foundation for understanding the methods used
in the articles that comprise this thesis, and provide the context necessary for
interpreting the results of these articles.
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CHAPTER 2

NATURAL LANGUAGE

PROCESSING

Natural language processing (NLP) and the intimately related field of computa-
tional linguistics1 has been an active area of computer science since at least the
1940s (Jurafsky & Martin, 2025). Approaches to NLP can be roughly divided
into rule-based methods and NLP based on machine learning algorithms. In
practice, NLP systems rely on a mixture of techniques to achieve their results.

Rule-based NLP methods, such as regular expressions, can effectively process
well-behaved language. However, natural language data are often unpredictable
and noisy, so carefully constructed rules may be brittle due to the assumptions
made when crafting them. On the other hand, machine learning algorithms learn
heuristic patterns directly from data, often making them more resilient to unan-
ticipated inputs. This doctoral thesis focuses mainly on the machine learning
approaches to NLP. Specifically, we focus on methods based on deep learning.

2.1 REPRESENTING WORDS AS VECTORS

Deep learning relies on the universal approximation theorem (Cybenko, 1989;
Hornik et al., 1989), which states that any function mapping between two real
vector spaces can be approximated using a feedforward neural network with at

1Delineating these two fields is a topic for sometimes heated debates. The author’s opinion is
that it is a question of whether the emphasis is placed on the computational aspects or the linguistic
aspects of processing human language.
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Figure 2.1: In image processing, we can represent an image as a vector by viewing
the image as a long string of pixels. These pixels can be viewed as integer triplets,
with the values corresponding to the pixels’ RGB values. However, the image can
also be converted into a grayscale image, shrunken, or transformed in some other
way before further processing to avoid including too much information.

least one hidden layer2 (Goodfellow et al., 2016). A feedforward neural network
is a system of mathematical functions that consists of an input layer, an output
layer, and one hidden layer. When we only have one hidden layer, a system that
predicts y⃗ from an input vector x⃗ can be expressed as follows:

y⃗ = f (Wx⃗+ b⃗), (2.1)

where f is a non-linear activation function3 and the matrix W and vector b⃗ are
parameters that need to be tuned. The parameters are learned from training data
that associate a body of inputs with their expected outputs. The learning is driven
by a learning algorithm, and the most common algorithm that is used for training
in contemporary deep learning in NLP is stochastic gradient descent.

The acute reader will have noticed that the input to the neural network—x⃗—is
a vector. This is the case for all neural networks. By converting our human-
understandable input into a vector representation, we can take advantage of the
power of the universal approximation theorem. However, this conversion is non-
trivial and depends on the specific type of data that are to be processed. For ex-
ample, in image processing, an image can be viewed as a series of integer values
corresponding to the RGB values of each pixel4. This is a relatively straight-
forward representation, as illustrated in Figure 2.1. Even in this case, however,

2In practice, neural networks have many layers in complex configurations. Examples can be
found in Section 2.4.

3This activation function can be any non-linear function. Choosing an appropriate function is
an art in itself and depends on the specific type of network one wants to construct.

4Pixels are often represented as triplets of integers. Each integer corresponds to the amount of
red, green, and blue (RGB) needed to obtain the pixel’s color.
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Figure 2.2: By associating each unique word with an index in a vector, the two ex-
ample documents can be vectorized into two different vector representations. These
bag-of-words representations of the documents are illustrated by the columns in the
table.

Figure 2.3: With a sufficiently large collection of documents, the rows of the col-
lection of bag-of-words vectors capture meaningful semantic information. In this
small example, the row representations for cat and purrs are the same. This means
that even this small example captures the association between purring and cats.

decisions need to be made regarding how to down-sample and crop the image to
make it fit into a finite and fixed-sized vector.

Unlike images, natural language does not have an obvious vectorization proce-
dure. Perhaps the most straightforward vectorization technique for natural lan-
guage data is the bag-of-words (BoW) approach. The prototypical BoW model
considers a document as a collection of words without any order (a bag of words).
In Figure 2.2, the documents are represented as count vectors, where every value
reflects the number of times a word associated with the corresponding index
occurs in the document (Jurafsky & Martin, 2025). The BoW approach is suf-
ficient for some problems, but a significant disadvantage is that it ignores the
word order. This means that the two sentences "work is life" and "life is work"
have identical BoW representations even though, semantically, they are very dif-
ferent. Furthermore, using the index of a vector to represent an individual word
ignores the semantic similarities between words. A BoW vector does not capture
the fact that different and dissimilar are synonyms, instead representing them as
meaningless and unrelated indices in a vector.
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To create more semantically rich representations of words, NLP practitioners
have turned to learned vector representations. These may, for example, be based
on neural methods (Bojanowski et al., 2017; Mikolov et al., 2013), but they can
also be learned using simpler techniques. A straightforward idea is to represent
a word using the documents in which it occurs. This inversion of the BoW ap-
proach is exemplified in Figure 2.3 and illustrates the idea of representing words
using their co-occurrences. This idea is sometimes referred to as the distribu-
tional hypothesis and suggests that the meaning of words can be discerned by
studying the context in which words are used (Firth, 1957; Wittgenstein, 1953).
As we will see in later sections, this idea has proved to be very powerful and
currently underpins most—if not all—state-of-the-art NLP systems.

2.2 WORDS, TOKENS AND SUB-WORD TOKENS

In the previous section, we discussed how words can be converted into vectors.
However, there is an important step that is still missing. Computers represent
textual data as continuous strings of characters. Before we can convert words
to strings, we need to decide how to convert the continuous strings of charac-
ters into discrete words. This process is known as tokenization and the resulting
discrete units—discussed as words in previous sections—are referred to as to-
kens (Jurafsky & Martin, 2025). The finite set of tokens that an NLP model is
configured to process is called the model’s vocabulary.

A naïve approach would be to split the string of characters based on white-space
characters and on punctuation. This strategy will indeed produce discrete tokens,
but will suffer from a fair bit of redundancy. For example, the token dog in Figure
2.3 will have a vector, but a hypothetical later token Dogs will have a different
vector. Worse, if Dogs does not occur in the training corpus, then the model
will not have any vector at all for this token. To rectify this situation, tokeniza-
tion pipelines typically apply different normalization strategies such as stemming
and case normalization to transform these two distinct words into the same to-
ken (Manning et al., 2008). In this example, stemming would involve removing
the plural suffix -s and subsequent lowercasing would transform Dogs into dog.
Consequently, a model using this more sophisticated tokenization strategy will
have a more compact and efficient vocabulary.

Incorporating normalization techniques into the tokenization pipeline will
reduce—but not eliminate—the risk of encountering tokens outside the model’s
vocabulary. The number of words possible in human languages is infinite and
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Figure 2.4: Here, there will be an illustration of the tokenization of "Tokenization"
→ "Token" + "izat" + "ion" and "Vakili" → "V" + "aki" + "li".

constantly changing, and can never be accomodated be a finite vocabulary of the
kind we have been discussion so far. These out-of-vocabulary tokens are often
assigned a special unknown token5 to allow models to process input sequences
even if some tokens lack a vector representation. Nevertheless, this strategy will
necessarily result in information essentially being thrown away as all out-of-
vocabulary tokens will be represented by the same single vector.

A tokenization strategy that almost entirely avoids the problem of unknown to-
kens is sub-word tokenization (Jurafsky & Martin, 2025). As their name implies,
sub-word tokenizers go beyond the word level when segmenting strings into to-
kens. In addition to word-level tokens, sub-word tokenizers also support tokens
representing parts of a word. The vocabulary of word-level and sub-word tokens
is learned from a corpus, and is typically specific to the NLP model it was cre-
ated for. As illustrated in Figure 2.4, a sub-word tokenizer can represent words
even if they were never encountered in the training corpus, and sometimes cre-
ates morphologically motivated segmentations of words it had encountered. The
first sub-word tokenization algorithm was based on byte-pair encoding (Sennrich
et al., 2016), but many other algorithms have been developed since. At the time
of writing, all widely-used LLMs rely on a sub-word tokenization algorithm to
segment their input.

2.3 CLASSIFICATION

Machine learning models are designed and trained to produce accurate predic-
tions. These predictions can take many different forms. At the beginning of
Section 2.1, we saw how a feedforward neural network can produce an output
y⃗ from an input vector x⃗. The output may be a vector, as in the previous for-
mulation, or it can be a scalar value6. Often, the indices in the output vector
correspond to different classes assigned to each data point. The model is then
trained to predict the class of an input by maximizing the value at the correct
index in the output vector. This process is called classification.

5These unknown tokens are typically rendered as [UNK] when discussing model vocabularies.
6When the task is to produce a scalar value, it is called a regression problem.
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Figure 2.5: Document-level classification involves assigning a label to a document.
This example shows how a factuality classifier might classify the certainty of a
diagnosis. The output is a vector of four values corresponding to four different
degrees of certainty. The classifier correctly assigns the highest probability to the
index corresponding to Very certain diagnosis.

There are numerous examples of classification problems in NLP. Many prob-
lems involve assigning a label to a sequence of tokens. These problems are
called document-level classification tasks. The model processes all tokens in the
document and uses the information to assign a label to the entire document. An
example of document-level classification is illustrated in Figure 2.5. This exam-
ple is a variant of the factuality classification problem (Velupillai et al., 2011).
This task involves classifying the degree of certainty of a diagnosis based on the
EHR in which the diagnosis is recorded.

Sometimes, it is more interesting to classify a document on a more granular level.
A common class of tasks that involve doing this are token-level classification
problems, where labels are assigned to each individual token. A token-level task
that is central to this doctoral thesis is named entity recognition (NER). As illus-
trated in Figure 2.6, documents frequently contain the names of persons, place
names, and other interesting information. These are examples of named entities.
Named entities can also be more specialized, as in clinical entity recognition,
where the aim is to detect mentions of body parts, diagnoses, and other clinically
relevant entities. In either case, the aim of NER is to classify each token in a
document based on a pre-defined set of entity types (Jurafsky & Martin, 2025).

A special form of classification—often treated as a separate problem—is next-
token prediction. This classification problem tasks a model with predicting the
next token in a sequence, based on the preceeding tokens7. Given a vocabulary V
and a sequence of tokens t1, t2, ..., tn ∈V , the goal is to predict the most probable
next token tn+1:

tn+1 = argmax
v∈V

P(v | t1, t2, ..., tn). (2.2)

7In masked language modeling, as described in Subsection 2.5, the next token need not be
preceeded by the other tokens. Instead, the next token is predicted based on the surrounding
context tokens.



NATURAL LANGUAGE PROCESSING 13

Figure 2.6: This example illustrates a few named entities commonly found in nat-
ural language. NER systems can have many different categories, and they can even
have nested entity types. In this example, the Full Name entity consists of a First
Name and a Last Name. Note also that the Organization entity consists of multiple
words. Multi-word entities are common in NER, and the determination of where
an entity begins and ends can sometimes be ambiguous.

This classification task is important for two reasons. First, the task allows us
to generate new tokens. There is no need to stop at tn+1, one can proceed with
tokens tn+2, tn+3, and so on. This is in contrast to the other types of classification,
where we transform a natural language input into a label or a fixed-size sequence
of labels. Second, and relatedly, next-token prediction requires the model to have
rich representations of its vocabulary in order to effectively use the context. This
fact is important for understanding why next-token prediction, and variations of
this task, are essential to modern NLP techniques.

2.4 TRANSFORMER MODELS

In previous sections, we learned how to convert human-readable strings of text
into discrete tokens and finally into semantically rich vectors. However, the ques-
tion of how to process sequences of tokens was left unanswered. For example,
the simple feedforward network described at the beginning of the section has no
concept of time. Thankfully, there are many deep learning approaches for deal-
ing with sequences. Until 2018, the field was dominated by variants of recurrent
neural networks (RNNs), such as long short-term memory (LSTM) networks.
These networks rely on sequential processing, meaning that a sentence is pro-
cessed word by word8.

8Variants such as bidirectional LSTMs (Graves & Schmidhuber, 2005) process sequences from
left to right and right to left at the same time. However, the processing is still done word by word.
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In 2018, Google released the BERT model (Devlin et al., 2019), which popular-
ized the transformer architecture (Vaswani et al., 2017). Transformer models do
not process sentences word by word. Instead, they process entire sequences all at
once using a mechanism called self-attention9. This allows transformer models
to build powerful contextual representations for words not just from the words
themselves but by using all the words surrounding them. The static word vectors
described in the previous subsection would have the same vector for the word
bank, regardless of whether this refers to a river bank or a central bank. A con-
textual word representation can disambiguate these dissimilar meanings based
on the context.

The self-attention mechanism builds contextual representations by introducing
the concepts of query, key, and value vectors. These are analogous to concepts
from information retrieval. The query vector of a word is combined with the key
vectors of the words in its context to compute relevance scores for the surround-
ing words. These new vectors are computed using word embeddings w⃗ and the
matrices Q, K, and V for each vector type. The contextual embedding z⃗w is com-
posed of the value vectors of all words in the context, weighted by the relevance
for the word w. Given a sentence of words w ∈ W , we compute the contextual
embedding z⃗i for the word i:

q⃗w = x⃗wQ, k⃗w = x⃗wK, v⃗w = x⃗wV, (2.3)

z⃗i = ∑
w∈W

q⃗i ·⃗ kw · v⃗w. (2.4)

Modern transformer architectures use many instances of these self-attention
mechanisms, introducing many new matrices and vectors to learn during train-
ing. The intuition behind this is that each self-attention unit, hopefully, learns
a specific linguistic task. For example, this task could be word-sense disam-
biguation, as in the bank example, or coreference resolution (e.g., associating
pronouns with their referent). However, these additional matrices and vectors
mean that there are many more parameters that need to be learned from data. The
smallest BERT model consists of 110 million parameters (Devlin et al., 2019),
but the Llama 4 Behemoth model consists of two trillion parameters (Meta AI,
2025). Learning parameters at this scale requires enormous amounts of data.

9Many models include other mechanisms as well. For example, BERT also uses positional
embeddings. However, researchers have found that BERT can reconstruct the word order using
other signals (Abdou et al., 2022; Sinha et al., 2021). Thus, this mechanism is left out for the sake
of brevity.
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Thomas Vakili holds a [MASK] degree
↓

Thomas Vakili holds a master’s degree

Figure 2.7: In this example, the masked language model needs to reconstruct the
sentence by replacing the [MASK] token with the correct value: master’s. Some
other degree (e.g., doctoral) would have been just as semantically acceptable but
was not the sought-after replacement. A positive consequence of this situation is
that masked language models are able to learn facts about the world. On the other
hand, this information can become stale as the world changes. Furthermore, if the
facts are sensitive, they should not be learned at all.

2.5 PRE-TRAINED LANGUAGE MODELS

Annotated data are often scarce, but most transformer-based language models
learn through self-supervised learning using large unlabeled corpora. For ex-
ample, BERT was trained using data from Wikipedia and the BookCorpus (Zhu
et al., 2015) using a procedure called masked language modeling (MLM). This
procedure is inspired by the Cloze task (Taylor, 1953), which may be familiar
to students of foreign languages. The prototypical masked language model is
trained by reconstructing sentences in which some tokens have been replaced by
[MASK] tokens. An example of this task is illustrated in Figure 2.7. Formally,
the goal of MLM is to predict t[MASK] ∈V given a sequence T = {t1, t2, ..., tn}:

t[MASK] = argmax
v∈V

P(v | T \{t[MASK]}). (2.5)

Training transformer models using self-supervised tasks such as MLM is called
pre-training. Masked language modeling itself has limited use cases but trains
the model to build semantically rich representations. Pre-trained language mod-
els (PLMs) are then fine-tuned to perform more specific tasks. When neural
networks are trained from scratch, the models need to learn to model sequences
effectively in addition to learning to solve specific tasks. Because PLMs already
have the ability to model sequences, they typically need less annotated (and ex-
pensive) task-specific training data to perform well for a specific task.

The most common use-case for masked language modeling is to create encoder
models. These models are trained to produce embeddings of their input sequence
for further processing. Typically, these embeddings are used for classification—
both document-level and token-level classification. For example, BERT models
can be adapted to perform classification tasks by adding additional layers to the
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architectures. These new layers take the BERT embeddings as their input and the
whole network is then trained to map the input sequences to the desired labels.

Autoregressive language models10 are another category of PLMs. These are
trained to perform the traditional form of next-token prediction discussed in Sec-
tion 2.3:

tn+1 = argmax
v∈V

P(v | t1, t2, ..., tn). (Eq. 2.2)

In contrast to MLMs, autoregressive language models typically rely on next-
token prediction itself to perform various tasks. Consequently, autoregres-
sive language models are mainly used to generate text. In addition to self-
supervised next-token prediction, many autoregressive language models also un-
dergo instruction-tuning (Jurafsky & Martin, 2025). The goal of instruction-
tuning, as the name suggests, is to train models to follow instructions. Typi-
cally, this is accomplished by training models using reinforcement learning from
human feedback (RLHF; Stiennon et al., 2020). However, the autoregressive
models in this thesis have only been trained using next-token prediction.

The generative objectives used to train autoregressive language models can be
employed to solve various problems. Doing so involves crafting prompts that
convey the nature of the task that the model should solve. When solving a clas-
sification problem, the prompt will often include a number of examples of input-
label pairs. This approach is called few-shot classification, and is contrasted with
zero-shot classification where the model does not have any examples (Chang et
al., 2008; Palatucci et al., 2009). First and foremost, and in contrast to most
MLMs, autoregressive language models excel at generating synthetic text. This
application is how autoregressive models are used in this thesis, as is further
explained in Section 7.7.

2.6 ENCODERS AND DECODERS

Here, I intend to briefly introduce the concepts of encoders, decoders, and (even
more briefly) encoder-decoders.

10Sometimes referred to in the literature as causal or generative language models.
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CLINICAL NLP

Throughout a patient’s stay at a hospital, the clinical personnel who interact with
the patient make notes. In many countries, these notes about the patient and their
condition are entered into a digital patient record system1. These notes, along
with any measurements taken from patients, are called electronic health records
(EHRs). Although EHRs contain structured information such as lab measure-
ments or diagnosis codes, much of the information is only available in natural
language form. Clinical text mining is the extraction of this valuable informa-
tion from EHRs using NLP techniques.

Write something about domain adaptation in the clinical domain. Pecularities of
clinical data etc.

3.1 APPLICATIONS AND USE CASES

Describe more use-cases, both classification (tasks used in experiments and
decision-support systems) and NLG (like discharge summary generation).

Broadly speaking, clinical text mining can be used to achieve two objectives.
One objective is to improve the quality of care for patients. This can be done
by building tools that enhance the ability of the healthcare system to avoid harm
and enhance medical professionals’ ability to address the needs of their patients.
Another use case for clinical text mining is improving the efficiency of care.

1Sweden, the country in which this doctoral thesis is being written, had digitalized its patient
record systems by 2007 (Dalianis, 2018b).
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These two objectives are frequently targeted jointly, but different applications
emphasize certain aspects differently.

An example of an application that can improve the quality of healthcare is the
detection of adverse drug events (ADEs). These can occur, for example, when a
patient’s prescribed medications interact in a harmful way. ADEs are a serious
problem, with one study finding that 22% of hospitalizations in Sweden could
in some way be linked to ADEs and that 38.8% of these hospitalizations were
preventable (Hakkarainen et al., 2014). Detecting these events before they cause
harm can potentially save the lives of patients, and an example of applying NLP
techniques to this problem with Swedish data is given by Henriksson (2015). In
addition to preventing harm, reducing the frequency of preventable hospitaliza-
tions increases the efficiency of the healthcare system.

Another clinical text mining application for increasing the efficiency of medi-
cal professionals is automatic ICD-10 coding. ICD-102 is the 10th iteration of
the ICD system, which assigns specific codes to different diagnoses. These sys-
tems have a long history of use for statistical purposes (Dalianis, 2018c) and are
also used to calculate reimbursements for caregivers. However, ICD-10 is very
detailed and requires physicians to select codes from a catalog of 32,000 codes
when writing EHRs (Dalianis, 2018c). This cumbersome and error-prone pro-
cess can be facilitated using clinical NLP, and the work of Remmer et al. (2021)
represents a recent attempt to process Swedish EHRs. Improving this process
can free up time for clinicians, allowing them to focus on their caregiving duties,
while also improving the quality of epidemiological data for research purposes.

3.2 LEGAL ISSUES

Applying machine learning to the clinical domain involves processing large
amounts of possibly sensitive data. From a purely ethical viewpoint, this is some-
thing that must be done with great care. Clinical NLP has many applications to
healthcare that could benefit patients and medical professionals, but these appli-
cations also come with risks. The Health Insurance Portability and Accountabil-
ity Act (HIPAA; CMS, 1996) is a regulation in the United States that has been
in effect since 1996. This law regulates how a form of PII—protected health
information (PHI)—can be used and shared and has had important ramifications
for the field of clinical NLP. The law stipulates that certain classes of PII must

2ICD is short for International Statistical Classification of Diseases and Related Health Prob-
lems.
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be removed or otherwise obscured from clinical data before these data can be
used for research purposes (Dalianis, 2018a). This requirement is one reason be-
hind the development of automatic de-identification, which is described in detail
in Subsection 4.3.2 and aims to detect and sanitize PII using various automatic
techniques.

The risks involved in processing large amounts of personal data are not specific to
the clinical domain, and the widespread adoption of data-hungry algorithms has
prompted other legal developments to safeguard the privacy of citizens. Citizens
of the European Union have, since 2018, been protected by the General Data
Protection Regulation (GDPR). This is a law with higher ambitions than HIPAA,
and it has a scope that goes beyond the health domain. The GDPR requires
that all processing of personal data owned by any EU citizen complies with the
regulations.

Personal data is defined in Article 4 as any information relating to an identifi-
able natural person. This definition is much broader than the definition of PHI in
HIPAA and could, for example, include information such as a person’s height.
Such information must be protected, but the criteria for what protections are
required by law are not clear. Furthermore, it is not clear whether a machine
learning model is considered aggregated data, for which there are less strict re-
quirements (Cummings & Desai, 2018). As we will see in the next section, ma-
chine learning models can leak personal information. These risks can be partially
mitigated, as described in Chapter 4.3. Unfortunately, there is no consensus re-
garding what degree of privacy preservation is enough to satisfy the requirements
of the GDPR.
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CHAPTER 4

PRIVACY

Starting text

4.1 DEFINING PRIVACY

Theoretical and philosophical definition of privacy and why it is important.

4.2 PRIVACY ATTACKS

As mentioned in Section 2.4, pre-trained language models consist of millions—
even billions—of parameters. These parameters are trained to perform well on
self-supervised tasks that involve reconstructing training data. Because of this,
they sometimes learn to reconstruct their training data too well. When this hap-
pens, they are said to have unintentionally memorized their training data. This
makes them susceptible to privacy attacks, of which there are two main cate-
gories: training data extraction and membership inference attacks.

4.2.1 TRAINING DATA EXTRACTION

Training data extraction attacks are, as the name implies, attacks that are able to
extract parts of the training data used to train a model. These can be designed in
many different ways. What most methods have in common is that they require
the adversary to find a method that causes the model to generate information.
Typically, the adversary must then have a method for determining whether the
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generated output was indeed part of the training data. This later step is equivalent
to the concept of membership inference and is discussed in the next subsection.

The way that an adversary forces a model to generate possible training data varies
depending on the background information they have and the attacked model’s
architecture. Unprompted attacks do not make any assumptions about the nature
of the training data. Such attacks rely on a sampling algorithm to generate text
that may contain training data. Other attacks take a more controlled approach.
Prompted attacks ask the model to continue a sentence that has been crafted
to prime the model to leak sensitive information1. A related attack is the slot-
filling attack, which is designed similarly to self-supervised training in masked
language modeling. In this attack, the model is asked to fill a slot in a sentence.
This incomplete sentence could be a leaked fragment of the training data2 or a
sentence designed to make the model accidentally reveal memorized facts.

Some language models have been shown to be susceptible to training data ex-
traction attacks. Carlini et al. (2021) attack the model GPT-2 (Radford et al.,
2019) by mounting prompted and unprompted attacks. The data they generate
are then verified as training data and are shown to contain sensitive information
such as social security numbers, names, and e-mail addresses. Part of the success
of this particular attack is that GPT-2 is a generative language model. This means
that it has been designed to produce text. In contrast, there were no examples of
successful training data extraction attacks that target BERT models at the time
of writing. One likely reason for this is that BERT models were not designed to
generate large amounts of text. However, in Section 7.6, we will explore meth-
ods for forcing BERT models to generate text with reasonable quality.

4.2.2 MEMBERSHIP INFERENCE

Unlike the attacks described in the previous subsection, membership inference
attacks do not aim to extract training data. Instead, they seek to determine
whether or not a data point was part of a model’s training data. These attacks are
often included as part of a training data extraction attack. An adversary typically
needs to discern whether an extracted data point is actually from the training data
or if it is synthetic. However, a successful membership inference attack can by
itself reveal sensitive information. For example, models trained using clinical
data typically use data that come from a specific and known set of hospitals and

1A simple example of prompting is the following: Thomas Vakili’s personal number is ...
2For example, an adversary attempting a slot-filling attack might already have a de-identified

sample from an electronic health record: Mr. Vakili came in with an ulcer.
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clinical units from a specific time range. Learning that a patient occurs in the
training data can reveal that a patient has visited a clinic or hospital and when
this may have occurred. If the set of clinical units is specific enough, then this
can also reveal information about what illnesses a patient has suffered from.

Membership inference attacks can be constructed in different ways and for dif-
ferent forms of data. In this thesis, we focus on attacks that target pre-trained
transformer models. These membership inference attacks discern whether a data
point was part of a model’s training data by exploiting the model’s reaction to the
data point. The intuition behind the attack is that models react differently to data
points they have been trained with compared to novel data. One reason for this
is that, as we learned in Section 2.4, models like BERT are trained to reconstruct
their training data.

The reaction that is exploited can be a variety of different metrics. Examples in-
clude the model loss (Jagannatha et al., 2021) or normalized energy (Mireshghal-
lah et al., 2022). Stronger results can be achieved by comparing the reaction of
the attacked model to that of a reference model that we know has not been trained
using the target data point. Mireshghallah et al. (2022) use such a scheme, which
includes the aforementioned normalized energy values, and Carlini et al. (2021)
experiment with using metrics such as the Zlib compression rate (Deutsch &
Gailly, 1996) as the reference model.

4.3 PRIVACY PRESERVATION

Having established that transformer models are susceptible to privacy attacks,
we now turn our attention to methods for mitigating the resulting privacy risks.
Privacy-preserving machine learning is a broad topic that covers a variety of tech-
niques for many different types of models. The field is not specific to NLP and
transformer models. Indeed, many techniques are designed with other machine
learning domains in mind.

This section does not aim to provide an exhaustive list of privacy-preserving
techniques. Instead, the focus is on the two techniques most frequently men-
tioned in the papers of this thesis and the surrounding literature. These two
techniques are differentially private learning and automatic de-identification.
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4.3.1 DIFFERENTIALLY PRIVATE LEARNING

Differential privacy (DP) is a notion of privacy originally defined for aggregated
analyses of database records. DP provides mathematically rigorous and quan-
tifiable privacy guarantees and was originally proposed by Dwork et al. (2006b).
Essentially, DP quantifies privacy by describing the probability that any individ-
ual data point will alter the output of an aggregated analysis. Of course, if none
of the data points influence the aggregated analysis, then the data are useless.
The trade-off between privacy and utility is defined in terms of a parameter ε .
Given this parameter ε , an aggregation M with a range S, a dataset D, and a data
point d ∈ D, we have ε-differential privacy if

P[M(D) ∈ S]≤ eεP[M(D′) ∈ S], where D′ = D\{d}. (4.1)

A common variation of this definition allows the relationship to fail with a tol-
erance δ (Dwork et al., 2006a). This δ is added to the right-hand side of the
inequality, which gives us (ε , δ )-differentially private systems. Lower ε and δ

values mean stronger privacy guarantees. DP has been operationalized to design
differentially private algorithms for many domains. The most relevant applica-
tion, for the purposes of this thesis, is the emergence of differentially private
training algorithms for training machine learning models. Abadi et al. (2016)
propose such an algorithm for training deep neural networks. They do so by al-
tering the stochastic gradient descent algorithm (Goodfellow et al., 2016), which
updates a network based on the gradients—the partial derivatives with respect to
the training samples—and is ubiquitous in deep learning implementations. The
gradients are clipped (i.e., shrunken in magnitude) and altered by adding noise
to accommodate the selected values of ε and δ .

Using differentially private training algorithms allows us to train (ε , δ )-
differentially private models. However, DP was originally defined to protect
database records containing structured information. In the next subsection, we
will describe a different approach to protecting sensitive data that is tailored
specifically to natural language data.

4.3.2 AUTOMATIC DE-IDENTIFICATION

Although data such as an EHR may be sensitive, the individual words and
phrases differ in their sensitivity. An EHR describing a patient with a migraine
is not necessarily sensitive unless it contains identifiable information. This rea-
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soning is a guiding principle of the HIPAA guidelines that compel distributors of
clinical data to remove PHI, as discussed in Section 3.2. Removing PHI or other
PII is a form of de-identification.

De-identification has traditionally been done manually. This process of manu-
ally searching for PII to remove is still practiced and is very laborious. To save
time and other resources, researchers have studied how to automate this process.
This is called automatic de-identification. This process involves processing large
volumes of text and detecting words or phrases that are PII. This can be done us-
ing rule-based systems, systems based on machine learning, or combinations of
both approaches (Dalianis, 2018a). These pieces of PII are then sanitized in
some way, typically by redacting them or replacing them with realistic surrogate
values.

No automatic de-identification system is perfect. Regardless of the method used
to construct the system, it will sometimes miss some PII or accidentally flag
non-PII as sensitive. Thus, it is important to evaluate automatic de-identification
systems to understand what degree of privacy preservation they provide. In this
thesis, this is done by evaluating the precision and recall values for each PII class.
These metrics, as defined in Section 7.1, can be calculated on a per-class basis.
This results in a detailed description of how well an automatic de-identification
system handles a certain type of PII.

PII can take many different forms. Dalenius (1986) introduced the distinction
between direct identifiers and quasi-identifiers. Examples of PHI that are di-
rect identifiers are names and social security numbers. Quasi-identifiers, on the
other hand, can span a wider range of attributes. Although quasi-identifiers do
not directly identify an individual, they can do so when combined with external
data. Indeed, Sweeney (2000) showed that 87% of the US population could be
uniquely identified by their ZIP code, gender, and date of birth.

The relation between the HIPAA definition of PHI and PII in a more general
sense is illustrated in Figure 4.1. Some quasi-identifiers, such as ages and dates,
are examples of PHI covered by HIPAA. However, quasi-identifiers are not nec-
essarily represented as individual entities in a text. For example, the list of places
a person has visited may be a quasi-identifier if the itinerary is unique enough.
Additionally, seemingly innocuous words or phrases can be quasi-identifiers de-
pending on what other information is provided and whether an adversary has ac-
cess to additional external information. The automatic de-identification systems
considered in this thesis do not attempt to overcome this problem and instead
rely on a fixed set of direct identifiers and quasi-identifiers.
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Figure 4.1: COPIED FROM BMC ARTICLE

4.4 SYNTHETIC DATA

Due to the growing generative capabilities of contemporary LLMs, synthesizing
training data has been proposed as an alternative to using real, sensitive data.
This idea is especially attractive in domains where representative non-sensitive
data are challenging to come by or non-existent, as in the clinical domain. Syn-
thetic training data reduce the privacy risks by producing new training data that
are similar too—yet significantly different enough from—the original and sensi-
tive data.

Autoregressive language models are primarily trained to predict text that is as
probable as possible. At the same time, synthetic training data need to be la-
beled in order to be useful for most machine learning tasks. Datasets labeled
for NLP are—one must assume3—only a small portion of the training data used
to pre-train most autoregressive language models. When dealing with domain-
specific problems, it is also important that the synthetic text is semantically and
stylistically similar to the original data. There are three major approaches to
dealing with these two problems:

1. Domain adapting an autoregressive language model in order to produce
text that looks domain-specific, and then adding machine annotated labels.

3Many widely-used large language models lack proper documentation of what data were used
to train them.
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2. Fine-tuning an autoregressive model to produce corpora that are both sim-
ilar to the original data and contain labels.

3. Prompting an instruction-tuned language model to produce synthetic
data—labeled or unlabeled.

The first approach was selected for the experiments in Paper VI. This was pri-
marily motivated by experiments by Libbi et al. (2021) and Hiebel et al. (2023)
that compared the first and second methods. The results of both studies indicated
that synthesizing raw text and then adding machine annotations resulted in cor-
pora of higher quality. The third approach has also been demonstrated. Kiefer
(2024) instruction-tuned an autoregressive language model to produce clinical
notes that aligned with a given diagnosis code. In another clinical example, Liu
et al. (2025) synthesized training data for processing radiology reports. This
was done successfully using commercial and open-weights models, and using
few-shot prompting and zero-shot prompting. All three approaches have been
demonstrated as viable, and choosing which strategy to pursue depends on the
nature of the corpora and on the resources available.

In many cases, the corpus one wants to create a synthetic counterpart to is sen-
sitive. Unfortunately, a domain-adapted model is at risk of regurgitating its own
training data. Many studies (Hiebel et al., 2023; Kiefer, 2024; Libbi et al., 2021)
assess the severity of these risks by looking at the n-gram overlaps between the
real and synthetic data. However, this approach does not give rigorous privacy
guarantees and does not take into account the sensitivity of the overlapping data.
In any case, properly generated synthetic corpora are not direct copies of their
sensitive counterparts. By their very nature, they are less sensitive than the orig-
inal corpora. As part of a battery of privacy-preserving techniques, synthetic
training data are an interesting and promising development.
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PART II

METHODOLOGY

This thesis provides insights into the privacy risks of language modeling and
describes how these risks can be mitigated using automatic de-identification.
These insights are obtained from six papers that address the research questions
in Section 1.1. This chapter discusses the methodology underlying the research
and introduces the methods and data used in the experiments before finally de-
scribing the experimental setups of the individual studies.
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CHAPTER 5

RESEARCH STRATEGY

NLP is a multi-disciplinary field, and many different methodological outlooks
fit under the NLP umbrella. This thesis is focused on creating and evaluating
machine learning models and this goal determines the methodology used in the
papers. This sub-field of NLP is very empirically oriented and relies on bench-
marking to evaluate how varying the design and training procedure of a model
impacts its quality. Quality, in this context, can mean a variety of things. In
this thesis, we are mainly concerned with two notions of model quality: privacy
preservation and utility. The specifics of how these qualities are measured in the
individual experiments are laid out in Chapter 8.

5.1 BENCHMARKING

Benchmarking, in a machine learning context, is the practice of creating a variety
of machine learning models and comparing them using a standardized suite of
evaluations. When this is done correctly, it allows researchers to compare mod-
els and training procedures in a transparent, reproducible, and controlled manner.
The method has a long history in the computing sciences and has been explicitly
used since at least 1962 to assess the performance and speed of computing ma-
chines (Lewis & Crews, 1985). In contemporary machine learning research, the
notion of performance has shifted from this ideal of resource efficiency towards
describing the quality of a model’s predictions1.

1This shift towards disregarding computational constraints and data availability has been ques-
tioned in recent years. Initiatives such as the SustaiNLP workshop (Fan et al., 2022) aim to en-
courage more resource-efficient approaches.
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Machine learning problems are typically formulated as modeling a real phe-
nomenon in the physical world. Data that should and are assumed to describe
the studied phenomenon accurately are collected. Then, models are trained us-
ing parts of the collected data and evaluated on another part of the data. The
evaluation result is typically a collection of quantitative metrics such as the ac-
curacy, recall, precision, and F1 score. Crucially, the data used for evaluation are
separate from the training data. The evaluation data are often called the held-out
test data (James et al., 2013). The test data are essential for ensuring that the
evaluation measures the model’s ability to make predictions based on data it has
not been exposed to.

Models are trained to find patterns in data and associate them with specific pre-
dictions or outcomes. For example, an NER model learns that some tokens in
certain contexts tend to be associated with personal names. The testing phase al-
lows us, as model builders, to test whether these patterns have predictive power.
This process is analogous to the hypothetico-deductive model of science (Lady-
man, 2002). Based on the data, we train a model that hypothesizes how patterns
in the training data relate to their labels or classes. When the model is confronted
with new data, predictions are deduced mathematically from the model parame-
ters and evaluated based on the expected predictions.

When a model makes incorrect predictions, this does not lead to the wholesale
rejection of the model. Instead, the nature and frequency of these inaccurate pre-
dictions inform us about the limits of the model’s usefulness. This is because the
primary focus of the research is not to use models to describe natural phenom-
ena. Instead, the models themselves are the phenomena being studied. A typical
benchmarking study in machine learning will have a research question along the
lines of the following2:

How well does a model design M trained using a dataset D
perform on an evaluation dataset E compared to a baseline B?

Depending on the nature of the study, the model design can include concepts
such as the model architecture, certain hyper-parameters, or training procedures.
The dataset used to train the model may be from the same source as the evalua-
tion set, or it can be a dataset describing the same problem but in another setting
(e.g., describing patients from another hospital). Crucially, the performance is
measured using a set of well-defined metrics and is compared to a strong base-
line. This baseline is often the previous state-of-the-art method described in the

2However, the research question is often not explicitly formulated in this way due to the ubiq-
uitous nature of the benchmarking methodology.
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literature for a particular machine learning problem, or it may be the performance
of humans solving the same problem. In any case, the aim of these studies is to
quantify how certain configurations of datasets and model designs impact the
performance of the resulting models.

5.2 QUANTIFYING UTILITY

A central theme of this thesis is the conflicting goals of preserving privacy and
maintaining utility. The most privacy-minded approach when training models
would be to not use sensitive data at all. As discussed in Section 4.3, a wide
range of data can contain PII and thus be considered sensitive. Machine-learning
approaches to NLP, on the other hand, require large dataset that cannot feasibly
be rendered completely private. However, privacy is not binary, and data can be
made safer without destroying their utility.

Studying the relationship between privacy and utility necessitates a well-defined
notion of what constitutes a high-utility dataset. In this thesis, the utility of a
dataset is measured by training an NLP model using the data and measuring
the model’s predictive performance on held-out test data. When assessing how
well a privacy-preserving technique preserves utility, we compare the utility of
datasets when the technique is and is not applied. Ideally, the difference in utility
should be as small as possible.

5.3 LIMITATIONS

One problem is that focusing on the models themselves ignores the context in
which they will be used. This means that researchers risk building solutions
that will not be useful for the intended audience. Machine learning models can
perform very well on their test datasets while being ill-suited to the real world
(Foster et al., 2014). However, more often than not, the training data that have
been used represent all the data that are available, and collecting new training
data is often too expensive. Using non-standard datasets also reduces the repli-
cability of the research. Due to regulations such as the GDPR, there may also be
privacy constraints that prohibit researchers from sharing their data.

Another related problem is that the training and testing data are often poorly
understood, meaning that the models do not learn what researchers think they
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are learning. This can lead to problems such as the unintended memorization
of private information (Bender et al., 2021; Carlini et al., 2021) or biased algo-
rithms that discriminate against minorities (Bender et al., 2021; Green & Hu,
2018). Tackling these issues is challenging, even when researchers are aware
of the problems. The experiments that form the basis for this thesis have been
designed to mitigate many of the shortcomings of the benchmarking paradigm.
For example, the experiments with automatic de-identification in Papers IV and
V involve multiple clinical datasets. Using multiple clinical tasks for evaluation
means that the results are more representative of the clinical domain in general.
However, all experiments rely on either the Health Bank (Dalianis et al., 2015),
MEDDOCAN (Marimon et al., 2019), or MIMIC-III (Johnson et al., 2016)3.
This means, for example, that any models trained in the experiments may not
generalize to other datasets. A deeper discussion on this topic is provided in
Section 10.2.2

An alternative to benchmarking is to evaluate machine learning models by using
them in the real world. This typically involves incorporating them into a more ex-
tensive system. For example, instead of assessing an automatic diagnosis coder
using a held-out test dataset, we could use it in an end-to-end decision support
system. This is a commonly proposed use case for such models, and evaluating
a model this way would be a more direct measure of its quality. However, this
would be very resource-intensive. A realistic prototype of a decision support sys-
tem would need to be built, and a non-trivial number of clinicians would need to
be involved in testing the system. Furthermore, such a holistic evaluation makes
it difficult to determine whether the perceived quality is due to the performance
of the model, some other design choice, or the interaction between components.

5.4 RESEARCH ETHICS

The experiments in this thesis rely on several datasets that are, to various de-
grees, sensitive. Most importantly, several papers use the Health Bank research
infrastructure (Dalianis et al., 2015) which contains a large amount of sensitive
data. As such, experiments using these data must be carried out with care. The
data are stored in a highly secure server room at the Department of Computer
and Systems Sciences. All experiments in this thesis that use non-de-identified
Health Bank data were run on a machine running on-premises. Furthermore,

3MIMIC stands for Medical Information Mart for Intensive Care and is further descibed in
Section 6.2.
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all experiments using Health Bank data were conducted with approval from the
Swedish Ethical Review Authority under permission number 2019-05679.

The use of these sensitive data is justified as the aim of this research is to un-
derstand privacy risks and potential protective strategies. Ultimately, the thesis
aims to protect these types of sensitive data. Researching ways in which data can
be used in a privacy-preserving manner can unlock new potential uses of clini-
cal data. Many of these use-cases, such as building decision-support systems for
physicians, will benefit the persons described in the sensitive datasets, or persons
in similar situations.
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CHAPTER 6

DATA & MODELS

All of the experiments in this thesis are related to machine learning algorithms
that require large amounts of data. These data include traditional textual datasets
and data in the form of pre-trained language models.

6.1 HEALTH BANK

The Health Bank research infrastructure1 (Dalianis et al., 2015) is an extensive
collection of datasets, models, and machines maintained at the Department of
Computer and Systems Sciences at Stockholm University. The data were col-
lected from more than 500 clinical units at the Karolinska University Hospital
and were recorded from 2006 to 2014 and from 2020 to 2021. The textual data
in the EHRs have been used to domain adapt language models (Lamproudis et
al., 2021, 2022)—including in Papers IV and VI—and have also been used to
create a range of datasets that can be used to train machine learning models.

Stockholm EPR PHI Corpus PHI2 is a form of PII in EHRs. The term is im-
portant in the American HIPAA regulation, which lists several types of PHI that
must be sanitized before EHR data can be used for research (Dalianis, 2018a).
This corpus has annotations for 4,480 entities that belong to one of nine PII
classes: First Name, Last Name, Age, Phone Number, Location, Health Care
Unit, Organization, Full Date, and Partial Date. The corpus is approximately
380,000 words long and is further described in Velupillai et al. (2009) and Dalia-

1Details about the Health Bank are available at https://dsv.su.se/healthbank, as of May 2025.
2PHI is short for protected health information.

https://dsv.su.se/healthbank
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nis and Velupillai (2010). This corpus is used throughout the thesis to construct
the NER systems used for automatic de-identification.

Stockholm EPR Gastro ICD-10 Corpus ICD-10 is a hierarchy of codes for
specifying diagnoses that is used for statistical purposes and for hospital reim-
bursements (Dalianis, 2018c). This corpus is a collection of 6,062 discharge
summaries describing 4,985 unique patients that are coded as suffering from
gastrointestinal diseases. It was extracted from the Health Bank by Remmer et
al. (2021) and consists of 795,839 words.

Stockholm EPR ADE ICD-10 Corpus ICD-10 contains special codes for con-
ditions caused by adverse drug events (ADEs). The corpus consists of 16,858
samples divided into two classes based on whether or not the ICD-10 code is re-
lated to an ADE. The 634,000-token corpus was first extracted and used in Paper
IV.

Stockholm EPR Clinical Entity Corpus The free text of an EHR contains
many different forms of information. Certain words are more clinically rele-
vant, and this corpus contains 7,946 entities annotated with the labels Diagnosis,
Findings, Body parts, and Drugs. The corpus contains 70,852 words and is de-
scribed in Skeppstedt et al. (2014).

Stockholm EPR Diagnosis Factuality Corpus Medical professionals writing
EHRs assign diagnoses with varying degrees of confidence. This corpus con-
tains 240,000 words in which 7,066 mentions of diagnoses have been annotated
on a six-degree certainty scale from Certainly Negative to Certainly Positive.
The 3,710 samples are described in Velupillai et al. (2011) and Velupillai (2011).

6.2 MIMIC-III

MIMIC-III is a large database of EHRs collected between 2001 and 2012 from
American critical care units at the Beth Israel Deaconess Medical Center (John-
son et al., 2016). The database contains a wide range of measurements and clin-
ical notes describing visits from 38,597 patients between 2001 and 2012. The
free-text data have been de-identified in accordance with HIPAA, and instances
of PHI have been replaced with placeholders describing what type of PHI was
removed.

Because MIMIC-III has been de-identified, it can be accessed freely after one
passes an exam about research ethics and signs a data use agreement. MIMIC-
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Name Domain Language Corpus Paper

BERTBASE General English 3.3B words Devlin et al. (2019)
KB-BERT General Swedish 3.5B words Malmsten et al. (2020)

ClinicalBERT-1a Clinical English 3.3B + 0.4B words Lehman et al. (2021)
SweClin-BERT Clinical Swedish 3.5B + 2.8B words Lamproudis et al. (2021)

SweDeClin-BERT Clinical Swedish 3.5B + 2.8B words Vakili et al. (2022)

Table 6.1: The papers in this compilation thesis use a variety of BERT models. The
five most important models are described in this table. Both Swedish and English
models are used, and the models are trained on general domain corpora, with two
models being domain-adapted to the clinical domain. All models are the same size
as BERTBASE. The corpus sizes are described in terms of billions of words.

III has been widely used for clinical NLP. In particular, it has been used to pre-
train clinical language models (Huang et al., 2020b, 2020a). A pseudonymized
version of the EHRs, where the placeholders have been replaced with surrogates,
was created by Lehman et al. (2021) and is used in Papers I and II.

6.3 MEDDOCAN

Here, there will be a description of the MEDDOCAN corpus which is a NER
dataset in Spanish that covers various PII (Marimon et al., 2019).

6.4 ENCODER MODELS

All studies included in this thesis use encoder models in one way or another.
Section 2.4 describes pre-training and the BERT architecture. In this subsection,
we instead describe the most important pre-trained models used throughout this
thesis. A summary is displayed in Table 6.1, and details are provided below.

BERTBASE The BERT architecture was presented by Devlin et al. (2019), and
the authors released a series of pre-trained BERT models for others to use. The
models were created in smaller and larger sizes, and the small size was dubbed
the base model size. The BERTBASE model consists of 110 million parameters
and was trained using an English corpus consisting of 3.3 billion words.

KB-BERT Although multilingual BERT models (Devlin et al., 2019) exist,
many language communities have sought to create their own monolingual mod-
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els. KB-BERT is a Swedish BERT model used in this thesis that was created
by Malmsten et al. (2020) and was trained using multiple Swedish corpora. The
corpora span multiple genres and consist of just below 3.5 billion words.

ClinicalBERT-1a BERT models are pre-trained using general-domain data, al-
lowing them to perform well in many scenarios. However, many have found that
adapting a general-purpose BERT model to a specific domain can yield a bet-
ter in-domain performance (Beltagy et al., 2019; Lee et al., 2019). Lehman et
al. (2021) train a clinical BERT model using re-identified MIMIC-III data. The
model and its training corpus were made available to accredited researchers and
can be used to study the privacy implications of training using clinical data.

SweClin-BERT There are no multilingual BERT models for the clinical domain
that were trained using Swedish clinical data. To fill this gap, Lamproudis et al.
(2021) trained a model using a corpus extracted from the Health Bank (Dalianis
et al., 2015). The general-domain Swedish KB-BERT model was used for the
initialization of both the weights and the vocabulary, and SweClin-BERT was
then adapted to the clinical domain using the Health Bank data.

SweDeClin-BERT Paper IV (Vakili et al., 2022) examines the impact of pre-
training clinical BERT models using automatically de-identified data from the
Health Bank (Dalianis et al., 2015). The study led to the creation of a
new Swedish clinical BERT model that was pre-trained using automatically
pseudonymized data. Like SweClin-BERT, it was trained using continued pre-
training and initialized with the weights of KB-BERT, with which it shares its
vocabulary.

6.5 DECODER MODELS

Paper VI experiments with how generative decoder models can be used to syn-
thesize high-quality text. These synthetic data are then machine annotated and
used for NER of PII. Two different decoder models were used in the study:

GPT-SW3 This model was trained by AI Sweden (Ekgren et al., 2024) using
the Nordic Pile dataset Öhman et al., 2023. It is a GPT-style model Radford
et al., 2019 and is available in multiple sizes. In Paper VI, we used the versions
that consist of 1.3 billion and 6.3 billion parameters. As the name suggests, the
model was trained on a corpus containing a large amount of Swedish data.
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FLOR The second model used in Paper VI was created at the Barcelona Super-
computing Centre Da Dalt et al., 2024. It was trained primarily using Spanish,
Catalan, and English data. Two differently-sized versions of FLOR were used,
similarly to GPT-SW3. These two versions consisted of 1.3 billion and 6.7 bil-
lion parameters.
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CHAPTER 7

METHODS

The experiments in Chapter 8 rely on specific and in some cases recurring meth-
ods. This section aims to provide an understanding of the procedures that were
used to design the experiments.

7.1 METRICS FOR EVALUATING CLASSIFIERS

One of the most important features to consider when assessing a machine learn-
ing model is the extent to which it makes accurate predictions from unseen data.
This assessment is typically done by splitting the training data into two randomly
sampled parts, one large subset for training and a smaller subset for testing. This
smaller dataset is called the held-out test dataset. The predictive power of the
model is measured by classifying these unseen data points and comparing the
predicted classifications to their true classes.

Because the training-test split is done randomly, there is a risk that the smaller
held-out test dataset is not representative of the dataset as a whole. One strategy
that can be used to mitigate this is called k-fold cross-validation (James et al.,
2013). The dataset is partitioned into k equally sized folds, where k−1 folds are
used to train the model and the final fold is used for evaluation. This process
is repeated k times such that each of the k folds is used for evaluation, and the
metrics from each fold are then aggregated.

A natural first metric is accuracy. This is the proportion of test data points that
were correctly classified. While useful, this metric does not differentiate between
true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). For many applications, it is important to distinguish between these notions
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since they represent distinct types of errors. Two important metrics that capture
more nuance are the precision and recall:

Recall =
TP

TP+FN
, Precision =

TP
TP+FP

. (7.1)

The recall is sometimes colloquially referred to as the "hit rate." It represents
the degree to which the classifier successfully detects members of the positive
class (Goodfellow et al., 2016). For example, a spam filter with a high recall will
catch many spam emails. If the recall is too low, then many spam emails will
end up in the user’s inbox. A high recall is critical when the consequences of
failing to detect positive instances are dire. The precision represents the degree
to which a positive prediction can be trusted (ibid.). Returning to the spam filter,
a high-precision filter is one that rarely sounds false alarms. A high precision is
important when we want to avoid false positives. For example, a spam filter with
high precision will ensure that the user does not need to worry about legitimate
emails ending up in the spam folder.

In general, there is tension between these two metrics. This tension is referred
to as the precision-recall trade-off (Manning et al., 2008). If a classifier is too
eager to classify samples as positive, we will have a low false negative rate but a
high false positive rate. This translates into a high recall but a low precision. On
the other hand, an overly conservative classifier will yield few false positives but
also miss many true positives. Such a classifier will have a high precision but a
low recall. A metric that combines these two measures is the Fβ score:

Fβ = (1+β
2)

Precision ·Recall
β 2 ·Precision+Recall

. (7.2)

The Fβ score1 of a classifier is a weighted harmonic mean of the precision and
recall (Chinchor, 1992; Rijsbergen, 1979). A high value of β results in the recall
having a larger impact, and vice versa. A common variant is the F1 score, which
weights both metrics equally:

F1 = 2 · Precision ·Recall
Precision+Recall

. (7.3)

7.2 DOMAIN-ADAPTIVE FINE-TUNING

1The name F-score was first used in the MUC-4.0 challenge (Chinchor, 1992; Christen et al.,
2023) and was—according to Sasaki (2007)—chosen by mistake. The metric was derived from
another metric E defined by Rijsbergen (1979).
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Figure 7.1: Example of a successful de-identification using the three sanitization
approaches considered in this thesis. Filtering removes a sentence from the data if
PII is found. Tagging replaces the PII with its class (in this case, FIRST_NAME and
LAST_NAME). Pseudonymization instead replaces the PII with realistic surrogates.

Motivation (ref to literature), approaches for MLMs and also LoRA and QLoRA.

7.3 NER-BASED AUTOMATIC DE-IDENTIFICATION

As discussed in Subsection 4.3.2, automatic de-identification is a privacy-
preserving technique that decreases the privacy risks of a dataset by removing
PII. Automatic de-identification systems need a procedure for detecting instances
of PII. In the experiments of this thesis, the automatic de-identification systems
find PII by using NER models trained using PII datasets. Being classifiers, NER
models must also balance their precision against their recall. Having a high re-
call means that the privacy benefits are more robust since most of the PII in the
data will be sanitized. On the other hand, a model with a low precision will mis-
takenly flag non-PII as sensitive, reducing the data quality when these entities
are erroneously sanitized.

PII can be sanitized in many different ways. The experiments in this thesis
use the variations illustrated in Figure 7.1. One approach is to replace detected
PII with a realistic surrogate value. This technique is called pseudonymization.
When the automatic pseudonymizer is powered by a sufficiently powerful NER
model and the surrogate replacements are realistic enough, the pseudonymized
text should be indistinguishable from the sensitive version. A beneficial con-
sequence of this is that many missed pieces of PII will be hiding in plain sight
(HIPS; Carrell et al., 2013). This means that if an adversary spots PII, they can-
not be sure whether it is real PII or a surrogate value.

Another sanitization strategy is to replace PII with placeholders. The placehold-
ers may simply show that something was redacted or they may be descriptive
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tags informing the reader of which class of PII was hidden. We call this lat-
ter approach tagging. Tagging was used to de-identify the MIMIC-III corpus
(Johnson et al., 2016). This approach allows a corpus user to re-populate the
corpus with realistic surrogates, as is done during the pseudonymizing process.
This was done by Lehman et al. (2021) to create a pseudonymized MIMIC-III
corpus. Replacing PII with placeholders has the benefit of being more transpar-
ent than pseudonymization since a reader knows what was altered. On the other
hand, the privacy-preserving effects of HIPS are lost since an attacker can be
certain that any PII that remains in the text is real and was not detected during
de-identification.

A third, more aggressive approach to removing PII is to remove the entire sen-
tence in which PII is detected. This approach acts as a sentence filter. Doing this
has the added benefit of potentially catching surrounding PII that may otherwise
have been missed. This is especially useful if the list of PII the NER model has
been trained to detect is not exhaustive. This strategy, like the strategy of replac-
ing PII with placeholders, loses the benefits of HIPS. Another downside is that
filtering away potentially sensitive sentences removes data entirely, which can be
detrimental if data are scarce.

Papers IV and V rely on automatic de-identification systems trained using BERT
models. These models are fine-tuned to perform the NER task of identifying PII
using the Stockholm EPR PHI Corpus (Dalianis & Velupillai, 2010) mentioned
in Section 6.1. When pseudonymizing, the system selects surrogate values using
a rule-based approach based on the work of Dalianis (2019).

7.4 MEMBERSHIP INFERENCE FOR PRIVACY QUANTIFI-
CATION

In Subsection 4.2.2, we learned that membership inference attacks try to discern
whether or not a data point was part of a model’s training data. The attacks
typically use a model’s reaction to a data point to detect if the model has been
previously exposed to the data point. This is only possible if the model’s parame-
ters have memorized the data point strongly enough. For this reason, the efficacy
of membership inference attacks has been proposed as a method for quantifying
the degree of memorization in machine learning models (Murakonda & Shokri,
2020). This includes quantifying the privacy risks of pre-trained language mod-
els.
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For the privacy quantification to work, the implementation of the membership
inference attack has to be strong. Mireshghallah et al. (2022) describe a state-
of-the-art membership inference attack that targets masked language models like
BERT. The model works by comparing the reaction2 to a data point from a target
model and a reference model. The target model is the model that was trained
using the dataset that the data point may be a member of. Inversely, the reference
model is a model that we know has not been trained using this dataset.

The attack infers that a data point was used to train the target model if the dif-
ference in the reaction compared to the reference model is large enough. This
is determined by using a threshold that is calibrated using a dataset that was not
used to train either the reference model or the target model. The threshold is set
to the ratio at which α% of the calibration samples are misclassified as belonging
to the target model’s training data. α can be varied depending on the tolerance
for false positives.

Formally, this attack uses a likelihood ratio test (Wilks, 1938) to infer member-
ship and to quantify the privacy of a model. The likelihood ratio test has been
used to assess the privacy of genome-wide association studies (Sankararaman
et al., 2009). More recently, the test has been adapted to assess privacy in the
machine learning domain (Mireshghallah et al., 2022; Murakonda et al., 2021).
The test can be defined mathematically as follows: given a likelihood function
p(d | θ), two sets of model parameters θT and θR, and a threshold tα , we classify
a data point d as having been used to train θT if

log
[

p(d | θR)

p(d | θT )

]
≤ tα . (7.4)

The privacy risks of a language model are then based on how susceptible it is to
this attack for the full range of the tolerance rate α . This is determined by mea-
suring the AUC3, which is a threshold-independent metric that captures the rela-
tionship between the false positive and true positive rates of a classifier (James
et al., 2013).

7.5 MEASURING PRIVACY BY COUNTING N-GRAMS

2This reaction is calculated by viewing the models as energy-based probability distributions
(Goyal et al., 2022). The method for calculating this reaction for masked language models is
detailed in Mireshghallah et al. (2022).

3AUC stands for area under the curve. The curve in question is the plot of the true positive and
true negative rates for all possible thresholds.
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N-gram recall intro and example papers where it is used (Hiebel et al., 2023;
Libbi et al., 2021)

n-gram recall =
|R∩S|
|R| (7.5)

In Paper VI, a special form of n-gram recall is also introduced. This
modification—sensitive n-gram recall—specifically studies the n-grams associ-
ated with PII in the training corpus.

Figure 7.2: The n-gram recall is estimated by calculating the proportion of n-grams
in the training corpus (green circle) and the synthetic corpus (red circle). R∗ ⊆ R
(blue) represents the sensitive n-grams, and is used to calculate the sensitive n-gram
recall.

7.6 SAMPLING FROM BERT MODELS

BERT and other masked language models are not traditionally used for text gen-
eration. However, Wang and Cho (2019) describe a procedure for generating text
from BERT that relies on Gibbs sampling. In their formulation, the sequence is
initialized such that it contains only [MASK] tokens. At each generation step, a
random index in the sample is selected, and the token at that index is replaced.
Given the context formed by the surrounding tokens, this new token is sampled
based on the probabilities of the candidate tokens. This process continues for a
fixed but large number of iterations, and in some cases, there is a burn-in period
(Johansen, 2010) that helps to increase the diversity of the samples. Successively,



METHODS 49

Figure 7.3: Different tokens in a sentence have differently shaped probability dis-
tributions. When using top-k sampling, tokens with long or thick tails may be over-
or under-sampled. Nucleus sampling is more flexible and dynamically adjusts the
cut-off to accommodate probability distributions of different shapes.

the sample becomes more meaningful as [MASK] tokens are replaced with more
semantic tokens that constrain the context of the sample.

Top-k sampling (Fan et al., 2018) is a method for selecting which token to insert
into a particular index. BERT models have a vocabulary of thousands of tokens,
and sampling based on the entire probability distribution of the vocabulary is not
ideal. It is not ideal because transformer-based language models have a tendency
to overestimate the likelihood of low-probability tokens. Instead, it is more com-
mon to only consider the top-k most likely tokens. For example, Lehman et al.
(2021) use this sampling method with k = 40.

Nucleus sampling was proposed by Holtzman et al. (2020) and improves the
top-k sampling method by introducing a degree of flexibility with regard to the
cut-off governing which parts of the vocabulary to sample from. Instead of hav-
ing a fixed k, nucleus sampling uses a probability density cut-off p. Given a
vocabulary V , a sentence S, and a probability cut-off p, we sample from the
smallest subvocabulary V ′ ⊆V such that

∑
v∈V ′

P(v | S)≥ p. (7.6)
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By introducing this flexibility into the cut-off, nucleus sampling allows the sam-
pling algorithm to adapt to the context surrounding the sampled token. Figure 7.3
illustrates how nucleus sampling allows the sampling cut-off to adjust itself de-
pending on the thickness of the tail of the probability distribution for a given
token. The algorithm samples from fewer candidates when the probability distri-
bution is highly skewed and samples from a more diverse set of candidates when
the distribution has a longer tail.

7.7 NATURAL LANGUAGE GENERATION

Temperature, decoding algorithms, etc.



CHAPTER 8

EXPERIMENTS

The data and methods described in previous sections are employed to design
the experiments of the papers comprising this compilation thesis. This section
explains the experimental setups of the papers. The results of these experiments
are described in Chapter 9.

8.1 PAPER I: GENERATED TEXT QUALITY AND PRI-
VACY

The experiments in Paper I are inspired by and intended to extend some of the
results from Lehman et al. (2021). Specifically, the aim is to further investigate
whether or not BERT models are vulnerable to training data extraction attacks.
Lehman et al. (2021) generate text from a clinical BERT model trained using
MIMIC-III. They search the output for data points that mention a patient and a
clinical condition. Then, they determine if the patient’s name occurred in the
training corpus and if a patient with the name was associated with the condition.

They did not succeed in extracting any meaningful information by doing this, but
the experiment was one of many and did not explore different ways of generating
text. BERT models are not designed for generative purposes, meaning that the
quality of the generated text may be particularly sensitive to the algorithm used
to produce it. Paper I focuses on evaluating if more sophisticated algorithms
for generating text produce more sensitive data. The algorithms considered are
top-k sampling and nucleus sampling, which are described alongside the general
sampling procedure in Section 7.6.
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The samples are initialized such that they contain only [MASK] tokens 70% of
the time, and they are initialized using a name template1 30% of the time. Three
sampling techniques were employed: top-1000 sampling and nucleus sampling
with p = 0.95 and p = 0.99. We sampled 50,000 samples using each sampling
technique. These samples were evaluated in terms of privacy risks and text qual-
ity and compared to samples generated by Lehman et al. (2021), who use top-40
sampling. In addition to using more sophisticated sampling techniques, they run
the sampling loop for 250 iterations, whereas we run it for 1,000 iterations. They
also have a burn-in period of 250 iterations, while we use a burn-in period of 500
iterations.

Signs of memorization were then evaluated using the strategy used by Lehman
et al. (2021). A list of conditions associated with patients in MIMIC-III was
created using each patient’s ICD-9 codes and the MedCAT concepts (Kraljevic
et al., 2021) associated with those ICD-9 codes. This list was used to find what
conditions, if any, were mentioned in each generated sample. A Spacy NER
tagger was used to detect the names of patients in the samples. For every gener-
ated sample, we examined whether it contained the name of a patient mentioned
in the training corpus and if the sample mentioned a condition associated with
such a patient. The prevalence of such patient-condition associations was used
to analyze the degree of memorization of sensitive information.

Because the paper aimed to study the potential link between privacy leakage
and generation quality, the generated samples were evaluated using a suite of
text quality metrics. This selection of metrics was inspired by Holtzman et al.
(2020). The diversity of the generated text is measured using Self-BLEU (Zhu
et al., 2018) and the shape of the Zipf distribution (Piantadosi, 2014). In addition
to these diversity metrics, the quality was also measured by counting the number
of [MASK] tokens remaining in the output and determining the repetitiveness of
the samples.

8.2 PAPER II: MEMBERSHIP INFERENCE AND

PSEUDONYMIZATION

Both privacy-preserving techniques described in Chapter 4.3 have clear benefits
regarding privacy. Differentially private models provide formal privacy guaran-

1These templates followed the form "<Title> <First Name> <Last Name> is a yo patient with
[MASK]" (Lehman et al., 2021). The abbreviation yo means years old.
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Figure 8.1: The clinical BERT model studied in Papers I and II was trained using a
pseudonymized version of MIMIC-III created by Lehman et al. (2021). In Paper II,
we simulate the real pre-pseudonymized MIMIC-III corpus by changing all names
in the corpus. This creates a new version, letting us simulate the scenario in which
the model was trained on real, non-pseudonymized data. This figure is adapted
from Paper II.

tees defined by the ε and δ values used during training. The quality of automatic
de-identification systems, on the other hand, can be measured based on the recall
for each class. However, there is no consensus on how to compare these two
techniques to each other.

Murakonda and Shokri (2020) propose a tool that can measure the privacy risks
of machine learning models by subjecting them to membership inference attacks.
The degree to which models are susceptible to such attacks acts as a proxy for
how prone they are to memorizing their training data. Mireshghallah et al. (2022)
suggest that this method can be applied to masked language models like BERT.
They successfully launch a membership inference attack on the ClinicalBERT
models (Lehman et al., 2021) and imply that this shows that BERT models mem-
orize sensitive data.

Membership inference attacks work on a data-point level. In other words, the
attack shows whether a model reacts differently to data points that are present
in or absent from its training data. Often, the data points only contain small
amounts of sensitive data. For example, learning that somebody with an ulcer
has visited a hospital on some date is not sensitive. We consider the informa-
tion sensitive only when it is identifiable. There are exceptions to this rule, such
as highly uncommon diseases. Still, a core assumption of de-identification as a
privacy-preserving technique is that a data point can be made harmless by re-
moving sensitive entities. A prominent example of this principle in practice is
MIMIC-III, which is easily accessible because it has been sanitized by removing
sensitive entities.
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The aim of this paper (Vakili & Dalianis, 2023) was to evaluate whether or not
membership inference attacks can be used to quantify the privacy risks of models
trained using pseudonymized data. We use the same attack as Mireshghallah et
al. (2022) but use different datasets to simulate the scenario in which a model has
been trained using perfectly pseudonymized data. This simulated scenario is il-
lustrated in Figure 8.1. A model trained using perfectly pseudonymized data has
not been exposed to any sensitive PII and should be considered relatively safe,
just like MIMIC-III. If the membership inference attack accurately quantifies pri-
vacy risks, then the attack should be noticeably less accurate on a pseudonymized
model than on a model trained using sensitive data.

The ClinicalBERT model under attack was trained using a pseudonymized ver-
sion of MIMIC-III (Lehman et al., 2021). We create a new version of this corpus
in which every name is replaced. This situation, where we have two corpora that
differ only in terms of the names, is equivalent to having one sensitive corpus and
one perfectly pseudonymized derivative corpus. The attack is then carried out
using subsets of both versions that only include data points that contain names.

8.3 PAPER III: COMPARING DOMAIN-ADAPTED CLINI-
CAL MODELS TO GENERAL-DOMAIN MODELS

The most effective way of ensuring that sensitive training data do not leak is to
not use them at all. Consequently, deciding to use clinical data to train clini-
cal language models should enable clear performance gains in order to be justi-
fied. In Paper III, we benchmark two Swedish clinical BERT models—SweClin-
BERT and SweDeClin-BERT—against a series of seven general-domain encoder
models of varying sizes. The smallest models, including the two domain-adapted
models, consisted of 125 million parameters. At the other end of the spectrum,
the RemBERT model (Chung et al., 2020) consisted of 576 million parameters.
The general-domain models were selected based on their performance on the
subset of the EuroEval2 benchmark (Nielsen, 2023).

In contrast to EuroEval, the benchmark presented in Paper III—SweClinEval—
consists solely of Swedish clinical NLP tasks. Three of the tasks were document-
level classification tasks, and the other three were token-level classification tasks.
These six tasks were based on data from the Health Bank and are described in
Section 6.1. The nine encoder models were evaluated using each of the six tasks

2When Paper III was written, EuroEval was known as ScandEval.



EXPERIMENTS 55

using 10-fold cross-validation. The fine-tuned models were then compared based
on the average F1 scores across all ten folds. In the token-level classification task,
the micro F1 was used. For the document-level classification tasks, the F1 scores
were a weighted average of the class-wise F1 scores proportional to the number
of test samples belonging to each class. The impact of domain-adaptation could
then be explored by comparing the average F1 scores of the general-domain and
clinical-domain language models.

8.4 PAPER IV: PRE-TRAINING USING DE-IDENTIFIED

DATA

Automatic de-identification systems that rely on NER taggers to find sensitive
entities are not completely reliable. As is always the case when dealing with
classifiers, there is a trade-off between the recall and precision. Having a high
recall is important because this means that our de-identification process will be
effective in sanitizing sensitive data. On the other hand, there is a risk that a
low precision could cause the data to be corrupted due to the erroneous saniti-
zation of safe tokens. Figure 8.2 shows an example of what could happen when
a de-identification system for EHRs has a low precision. Potentially important
clinical information is lost and replaced with out-of-place information, thereby
decreasing the utility of the data.

This paper (Vakili et al., 2022) examined the impacts of de-identifying data using
a BERT-based Swedish de-identification system on the data utility. Two different
de-identification strategies are considered: pseudonymization and filtering. As
illustrated in Figure 8.3, pseudonymization involves replacing detected entities
with realistic surrogates, and filtering removes the entire sentence in which a
sensitive entity has been detected. These techniques are applied to 17.9 GB of
Health Bank EHRs, producing two new automatically de-identified versions of
these data. KB-BERT (Malmsten et al., 2020) is used as a starting point for
continuing pre-training using these two corpora, resulting in two new Swedish
clinical BERT models.

These de-identified models are compared to two baselines. The first baseline
is the general-purpose KB-BERT model that served as the initialization for the
new models. The second baseline is the SweClin-BERT model that was based on
KB-BERT and adapted to the clinical domain through training on an unaltered
version of the Health Bank corpus (Lamproudis et al., 2021). All four models are
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Figure 8.2: NER models are never completely accurate. When they suffer from im-
perfect precision, they may incorrectly label safe tokens as PII. In this hypothetical
example, the model has tagged the bone tibia as a piece of PII. Sanitizing non-PII
can degrade the utility of the data, especially if the non-PII contains information
that is important for downstream tasks.

Figure 8.3: In Paper IV, we consider two forms of sanitization strategies. These
strategies—filtering and pseudonymization—are illustrated above.

Figure 8.4: The quality of the domain adaptation of the models in Papers IV and
V is assessed using six clinical downstream tasks. These tasks include both token-
level and document-level classification tasks. These two types of tasks are shaded in
yellow and orange, respectively. Models are trained and evaluated for each down-
stream task and for each pre-trained model.
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Figure 8.5: In Paper V, pre-trained BERT models were fine-tuned on real data and
on pseudonymized versions of these data. The models were compared using the
average performance over 10 folds. The figure is taken from Paper V.

fine-tuned for the six clinical tasks illustrated in Figure 8.4 and compared based
on their F1 scores on each task.

The six tasks represent a wide range of clinical tasks that include both document
classification tasks and token-level classification tasks. The breadth of the tasks
used in the evaluation was intended to assess the external validity of the pre-
training results more confidently. Many different tasks are used to measure how
well the models adapt to the clinical domain as a whole rather than to any particu-
lar downstream task. Suppose that automatic de-identification preserves the util-
ity of the data. In that case, we expect the models trained on the pseudonymized
and filtered datasets to perform similarly to the model pre-trained using unaltered
data and better than the baseline model not adapted to the clinical domain.

8.5 PAPER V: END-TO-END TRAINING USING

PSEUDONYMIZED DATA

Whereas Paper IV studied the impact of automatic de-identification on pre-
training data. However, that study did not examine the effects of fine-tuning
using de-identified data. Pre-training relies on larger corpora than fine-tuning,
and it was not clear whether automatic pseudonymization would preserve the
utility in the more task-specific and data-constrained fine-tuning scenario. Paper
V studies how using de-identified data impacts both pre-training and fine-tuning.
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Five of the downstream tasks employed in Paper IV were used to gauge the
clinical utility of the final models. In contrast to Paper IV, the downstream
task datasets themselves were automatically de-identified, as illustrated in Fig-
ure 8.5. Because the fine-tuning datasets were de-identified, the Stockholm
EPR PHI corpus was excluded from the analysis as it was used for training the
de-identification. Two different pseudonymizers were used. One was on the
strongest available version of SweClin-BERT, the other on SweDeClin-BERT.
The difference between the pseudonymizers was that the one based on SweClin-
BERT had slightly better performance.

Using two different models allowed us to analyze the impact of the quality of the
pseudonymization. Unfortunately, computational constraints limited this analy-
sis to the datasets for fine-tuning. Nevertheless, six different configurations were
be compared—by alternating between pseudonymized fine-tuning datasets and
BERT models. In total, this lead to six different combinations of sensitive and
pseudonymized data, five different downstream tasks, and evaluations across 10
folds. Consequently, a total of 300 models were trained. All configurations were
then compared using Mann-Whitney U tests (Demšar, 2006; Mann & Whitney,
1947) to determine if any differences were statistically significant. The tests were
carried out by comparing the F1 scores across all 10 folds of each configuration.

8.6 PAPER VI: SYNTHETIC TRAINING DATA FOR NER

The increasing generative capabilities of modern LLMs have made it possible to
generate synthetic texts. These can also be used as training data to train task-
specific models. Synthetic training data can be beneficial from a privacy per-
spective. Ideally, a synthetic version of a sensitive corpus should be dissimilar
enough that it does not pose a privacy risk to persons described in the original
data. Simultaneously, the synthetic data should be similar enough to its original
counterpart to still model the same problem. Synthetic corpora can also be arbi-
trarily big, since they can be generated indefinitely from the generative model.
Several studies have examined whether synthetic corpora can be used to solve
machine learning problems. Paper VI systematically examines how much data
are needed to produce high-quality training corpora. Specifically, the experi-
ments revolve around producing corpora for the NER task of detecting PII.

The process for synthesizing the training corpora was inspired by Libbi et al.
(2021), and is illustrated in Figure 8.6. First, a generative LLM is fine-tuned
using a real NER corpus. The purpose of doing so is to adapt it to the domain



EXPERIMENTS 59

Figure 8.6: In Paper VI, training data for NER are synthesized through a two-step
procedure. First, unlabeled data are generated from a domain-adapted LLM. Next,
these data are machine annotated using an encoder model fine-tuned for the same
NER task that the synthetic corpus targets.

of the original corpus. Then, the domain adapted model is used to generate large
amounts of synthetic text. However, these synthetic texts do not have any NER
labels. These are added by a machine annotating model. This model, too, is
trained using the original NER corpus. After adding these machine annotations,
the resulting corpus can be used to train new models without exposing them to
the original data.

The process involves several choices and constraints. First, one needs to decide
how large the synthesizing model should be. A higher amount of parameters may
lead to a more powerful synthesizer, but also requires more computational re-
sources during the domain-adaptive fine-tuning. Similarly, using large amounts
of data for creating the synthesizing and machine annotating models may im-
prove the corpus. On the other hand, doing so also exposes more sensitive data
to privacy risks and increases the computational demands of the process. Ideally,
one should use as small datasets as possible and models with as few parameters
as possible. In Paper VI, the interactions between the impact of varying these
constraints were studied systematically.

The experiments were conducted using both Swedish and Spanish datasets and
models. The impact of adjusting four different factors was studied:

Model size The generative LLMs, GPT-SW3 (Swedish) and FLOR (Spanish)
were available in both smaller and larger versions. Both the versions with ∼1.3
billion parameters were used, and the versions consisting of ∼6.5 billion param-
eters.
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Domain adaptation The amount of data used to domain-adapt the generative
LLMs was varied between 0% of the original data to 95% of the original data.

Machine annotation In one experiment, the proportions of the data used for
domain adaptation and for creating the machine annotator was the same. Then,
the amount of data used for domain adaptation was fixed while the data used to
train the machine annotator varied.

Synthesized amount The final parameter that was studied was to what extent
generating larger datasets resulted in better downstream models. The size of
the synthetic corpus was varied between 5%, 100%, and 400% the size of the
original corpus.

The entire pipeline for creating the synthetic corpora was evaluated—for all of
the variables mentioned above—using five-fold cross-validation. Then, the im-
pact of varying the variables was assessed by training downstream models on
the synthetic corpora and evaluating them on each folds held-out test data. The
performance was compared based on the average F1 score obtained by each con-
figuration across the five folds. Furthermore, the corpora were compared to the
original corpora in terms of their lexical features, and in terms of privacy. The
privacy of the synthetic corpora were estimated by counting the number of n-
grams occuring in both the synthetic and original corpora. Since the original
corpora were annotated for PII, we could also count n-grams that were associ-
ated with PII in the original data.



PART III

CONTRIBUTIONS

The six papers make a number of contributions to the NLP community. This
chapter describes the contributions of the results from the experiments described
in Chapter 8, not only in terms of new knowledge but also in the form of new
resources for Swedish clinical NLP.
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CHAPTER 9

RESULTS

The papers comprising this thesis address a variety of research questions. These
questions are not limited to the research questions of this thesis, which are de-
scribed in Section 1.1. This section describes the full contributions of each paper,
with a special focus on the research questions of this thesis.

9.1 RESILIENCE OF BERT MODELS

The overarching research question of Paper I is whether BERT models are sus-
ceptible to training data extraction attacks in the same way as autoregressive
models (Carlini et al., 2021). Lehman et al. (2021) performed experiments to
study this by generating large amounts of text from BERT models. They were
unable to reliably extract private information, but their data were generated using
very rudimentary sampling techniques.

npn neuro : pt is conversant w / language barrier
( pt understands ) and word finding difficulty .
pt is on keppra for posturing during drainage of
wound vac .

Figure 9.1: Example of the text generated using the enhanced sampling methods
explored in Paper I. This example of generated clinical language is relatively fluent,
and the information is coherent. For example, the text describes a patient with
neurological problems being treated with the epilepsy medication Keppra.

Paper I explored whether the failure to extract sensitive information could be
mitigated by using more sophisticated sampling techniques. A total of 150,000
samples were generated using three different sampling techniques. An example
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P(condition | name) P(wrong condition | name)

Lehman et al. (2021) 23.53% 28.33%
k = 1000 24.06% 28.28%
p = 0.99 24.72% 28.25%
p = 0.95 25.51% 29.33%

Table 9.1: If a sentence contains the name of a patient in the corpus, P(condition |
name) describes the probability that the sentence also contains one of the patient’s
conditions. P(wrong condition | name) is the probability that the sentence contains
conditions, but none of them are associated with a patient with that name.

of the generated text can be found in Figure 9.1. Evaluations of the generated
samples showed that the linguistic quality of the samples was higher than that of
the samples generated by Lehman et al. (2021). This was likely the first paper to
show that nucleus sampling (Holtzman et al., 2020) can be used to generate text
from masked language models.

While the quality of the generated samples improved, we could find no increase
in the level of privacy leakage. There were several samples that contained the
name of a patient alongside a condition. More often than not, as shown in
Table 9.1, the condition was not actually associated with a patient bearing that
name. Furthermore, many of the conditions generated described vague symp-
toms such as pain. These conditions were likely to be associated with many
patients, meaning that they were not reliable signals of actual sensitive informa-
tion.

The results of Paper I suggest that BERT models are less susceptible to training
data extraction attacks than models such as GPT-2. The efficacy of training data
extraction attacks does not necessarily increase when the sampling methods are
of higher quality. It cannot be ruled out that future research may find more
effective ways of extracting training data from BERT models. At the time of
writing, however, no examples of such algorithms existed.

Paper II examined a state-of-the-art membership inference attack that targets
masked language models. The attack is shown to be highly accurate in determin-
ing whether or not data points have been used to train BERT models. However,
the results of Paper II show that this accuracy is only valid for data points and
that the attack is inaccurate when the data are altered—for example, when names
are pseudonymized.
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Training data Attacked data Accuracy Precision Recall AUC

Sensitive Random samples 0.751 0.990 0.548 0.916
Sensitive Samples with names 0.780 0.990 0.566 0.882

Pseudonymized Samples with names 0.770 0.990 0.548 0.865

Table 9.2: The membership inference attack is run with three different configura-
tions. The first row lists the results obtained by attacking data from Mireshghallah
et al. (2022). The results in the other two rows are from attacks that focus on data
points containing names. The second row lists the results obtained when the model
is trained using sensitive data, and the final row represents the scenario in which
all names in the training data have been pseudonymized. As shown in the table
(adapted from Paper II), the differences between the three configurations are small.

Table 9.2 shows that the membership inference attack performs as strongly when
the data are sensitive as it does when the data have been sanitized by replacing
all the names. This result suggests that replacing all the names does not provide
any significant privacy benefits. While pseudonymization may not be a panacea
for privacy risks, it is certainly the case that a model that has been exposed to
real PII is more sensitive than a model that has not. However, the attack does not
capture this fact.

The results of Paper II do not prove that BERT models do not memorize PII.
However, the results show that there is still no general-purpose way of quantify-
ing this memorization since the state-of-the-art attack designed by Mireshghal-
lah et al. (2022) cannot be used to quantify the privacy-preserving effects of
pseudonymizing training data. By showing that the attacks are insensitive to
differences in PII, the results also suggest that the attack is inadequate when it
comes to measuring the memorization of sensitive entities.

9.2 DOMAIN-ADAPTATION PROVIDES CLEAR BENEFITS

The usefulness of domain-adaptation when dealing with clinical NLP was
demonstrated in Papers III, IV, and VI. In Papers III and IV, we assessed how
domain-adaptive pre-training helps language models outperform general-domain
models on clinical NLP tasks. In Paper IV, this is shown since both SweClin-
BERT and SweDeClin-BERT perform better than their general-domain coun-
terpart KB-BERT. In Table 9.5, the top row represents the general-domain KB-
BERT model which has not been trained using any clinical data. The subsequent
rows list the F1 scores obtained by three different domain-adapted models that
differ in how the pre-training data were de-identified. For the purposes of this
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section, it suffices to note that all three domain-adapted language models perform
better than the general-domain KB-BERT model.

Model Size ICD-10 Factuality ADE

Classification Classification Classification

SweDeClin-BERT 125 M 0.832±0.011 0.735±0.018 0.203±0.022
SweClin-BERT 125 M 0.836±0.014 0.731±0.021 0.196±0.014

AI Nordics BERT Large 335 M 0.811±0.012 0.657±0.025 0.192±0.013
KB-BERT Large 370 M 0.801±0.013 0.683±0.019 0.190±0.011
Multilingual E5 Large 560 M 0.824±0.013 0.525±0.074 0.192±0.015

Model Size Factuality Clinical Entity PHI

NER NER NER

SweDeClin-BERT 125 M 0.623±0.024 0.766±0.034 0.945±0.012
SweClin-BERT 125 M 0.610±0.018 0.754±0.038 0.938±0.014

AI Nordics BERT Large 335 M 0.612±0.026 0.721±0.039 0.948±0.010
AI Sweden RoBERTa Large 355 M 0.641±0.011 0.779±0.036 0.965±0.009

Table 9.3: The average F1 scores and standard deviations on each of the six tasks is
summarized in this table, which was adapted from Paper III. The highest F1 of each
task is bolded, and the second highest is underlined. The best-performing general-
domain models are compared to the two domain-adapted models, separately for the
NER and document-level classification tasks. The size of each model consists of is
listed in Millions of parameters.

These results were confirmed in Paper III, in which two of these models were
compared to seven different general-domain models on six different Swedish
clinical NLP tasks. The two models that were tested were SweClin-BERT and
SweDeClin-BERT—listed in Table 9.5 as Unaltered and Pseudonymized. As
shown in Table 9.3, the domain-adapted models outperform the general-domain
models on all three document-level classification tasks. They also perform
strongly on the NER tasks, especially considering that the general-domain mod-
els that outperform them are nearly three times larger.

While Papers III and IV dealt with domain-adapting encoder models, Paper VI
instead domain-adapted generative decoder models. In these experiments, the
purpose was not to directly solve a classification in the traditional sense, but
to synthesize realistic training data. Similarly to the previous papers, we saw
that domain-adaptation resulted in higher-quality synthetic text that resulted in
higher-utility synthetic NER corpora. Table 9.4 lists the downstream F1 scores
when the synthesizing decoder models had been domain-adapted with increas-
ing amounts of data. Interestingly, high-quality synthetic text could be produced
without using the entire gold corpora. For SEPR PHI, strong results were at-
tained after using just 5% of the data.
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% for d.a. SEPR PHI MEDDOCAN

0% 0.547 ± 0.178 0.295 ± 0.011
5% 0.873 ± 0.014 0.313 ± 0.032

25% 0.877 ± 0.010 0.970 ± 0.005
50% 0.896 ± 0.007 0.970 ± 0.005
95% 0.896 ± 0.007 0.973 ± 0.003

Gold 0.926 ± 0.005 0.978 ± 0.005

Table 9.4: The synthesizing decoder models were domain adapted using varying
proportions of the two datasets. These models were then used to generate syn-
thetic corpora that—after machine-annotation—were used to train NER models.
The table lists the average F1 scores of the synthetic NER models as well as the
gold-standard models.

Clinical data
ICD-10

Classification

PHI

NER

Clinical entity

NER

Factuality

Classification

Factuality

NER

ADE

Classification

None 0.799 0.91 0.803 0.635 0.630 0.183
Unaltered 0.833 0.941 0.858 0.732 0.682 0.199
Filtered 0.833 0.929 0.854 0.731 0.672 0.199
Pseudonymized 0.832 0.941 0.861 0.736 0.684 0.191

Table 9.5: One general-purpose model and three domain-adapted clinical models
were fine-tuned for six clinical tasks. There were three clinical models: one was
domain-adapted using unaltered data, one was domain-adapted using filtered data,
where sentences containing sensitive entities were removed, and one was domain-
adapted using pseudonymized data, where sensitive entities were replaced with sur-
rogate values. All of the values (adapted from Paper IV) are F1 scores, and the best
results are bolded.

9.3 AUTOMATIC DE-IDENTIFICATION PRESERVES DATA

UTILITY

Papers IV and V examined the impact of automatic de-identification on the util-
ity of the data being sanitized. Paper IV examined the impact of de-identifying
pre-training data when domain-adapting clinical BERT models. Paper V ex-
tended this analysis by studying the impact of one de-identification strategy—
automatic pseudonymization—on data used for both domain adaptation and for
task-specific fine-tuning.

In Paper IV, three automatically de-identified versions of the Health Bank were
used to create Swedish clinical BERT models. These models were then evaluated
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on six different clinical tasks. As shown in Table 9.5, the domain-adapted mod-
els outperformed the general-purpose model on all tasks. Furthermore, there is
no clear performance decrease from training on automatically de-identified data
compared to using unaltered clinical data.

Pseudonymized Factuality Clinical Entity ICD-10 Factuality ADE

P F NER NER Classification Classification Classification

✗ ✗ 0.686±0.013 0.851±0.012 0.821±0.012 0.729±0.020 0.186±0.009
✗ ✓ 0.639±0.038 0.843±0.011 0.810±0.011 0.725±0.021 0.190±0.017
✗ + 0.668±0.024 0.841±0.011 0.814±0.008 0.726±0.018 0.188±0.014
✓ ✗ 0.696±0.019 0.861±0.011 0.835±0.010 0.726±0.025 0.188±0.011
✓ ✓ 0.663±0.048 0.856±0.009 0.825±0.010 0.716±0.016 0.198±0.013
✓ + 0.695±0.013 0.853±0.011 0.832±0.007 0.733±0.022 0.205±0.018

Table 9.6: COPIED FROM THE ARTICLE: The table compares the performance
of each combination of models and datasets. The scores are the mean F1 scores to-
gether with their standard deviation based on the results from the 10 folds. P stands
for pre-training data and F for fine-tuning data. A ✗ denotes that no pseudonymiza-
tion was done, a ✓ that it was done using the pseudo model and a + means that
pseudonymization was performed using the pseudo+ model.

Extending these results, Paper V extends the analysis to both fine-tuning and do-
main adaptation. Furthermore, the analysis in Paper V extensively tests different
combinations of pseudonymized and unaltered data for domain adaptation and
fine-tuning and searches for statistically significant differences. Table 9.6 lists
the results of these experiments. In total, 150 Mann-Whitney U tests were per-
formed when searching for statistically significant differences. Of these differ-
ences, 24 results were statistically significant. Statistically significant but small
deteriorations were found between models fine-tuned using pseudonymized and
non-pseudonymized task data. All such differences were within a standard
deviation and—due to the large number of comparisons—might be spurious.
Crucially, none of these differences involved models pseudonymized end-to-
end being worse-performing than wholly or partially non-pseudonymized mod-
els. On the contrary, most of the statistically significant results pointed towards
pseudonymization helping the performance of the models.

When combined, the results from Paper IV and Paper V show that
pseudonymization can be applied to clinical data without harming the perfor-
mance of machine learning models trained on the pseudonymized data. This is
true both when BERT models are fine-tuned and when they are adapted to the
clinical domain through continued pre-training. Considering the modest compu-
tational cost of pseudonymizing data, the results suggest that pseudonymization
is a resource-efficient way of improving the privacy of models trained using clin-
ical data.
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9.4 FACTORS FOR SYNTHESIZING HIGH-QUALITY NER
CORPORA

Paper VI studies the factors that influence the utility of synthetic NER cor-
pora. Specifically, the study examines data for automatic detection of PII. As
described in Section 8.6, the data are synthesized through a procedure involving
two steps—text generation and machine annotation. The utility of the data were
then evaluated by measuring the downstream F1 score of BERT models trained
using the different synthesized corpora.

To be able to generate synthetic text, general-domain LLMs for Swedish and
Spanish were domain-adapted using the target NER dataset. In the study, we
examined the impact of choosing larger or smaller LLMs, and of varying the
amount of data used to domain-adapt them. The impact of machine annotation
was measured by training the machine-annotating model with NER corpora of
varying sizes. Finally, the impact of the amount of data synthesized was mea-
sured by using varying degrees of the synthetic corpora for training the down-
stream models. The results showed that the quality of the downstream models
was strongly tied to the amount of data used for creating the machine annotator.

% for m.a. SEPR PHI MEDDOCAN

Gold Synthetic Gold Synthetic

5% 0.707 ± 0.037 0.725 ± 0.039 0.931 ± 0.012 0.942 ± 0.010
25% 0.871 ± 0.010 0.858 ± 0.012 0.967 ± 0.003 0.967 ± 0.004
50% 0.908 ± 0.007 0.889 ± 0.005 0.973 ± 0.004 0.965 ± 0.009
95% 0.926 ± 0.005 0.896 ± 0.007 0.978 ± 0.005 0.973 ± 0.003

Table 9.7: COPIED FROM THE PAPER: The amount of data used to create the
machine annotator (m.a.) varied between 5% and 95% of the training data in each
fold. This table compares the downstream F1 scores of the synthetic and gold-
standard NER models.

Table 9.7 lists the downstream performance when the synthetic corpora have
been labeled by machine annotators trained using varying amount of NER data.
For both SEPR PHI and MEDDOCAN, increasing the amount of data available
for creating the machine annotating model improves downstream performance.
The effect is more pronounced in the case of SEPR PHI, where there is a large
jump in downstream performance between using 5% and 25%.

A more surprising result is that the downstream performance is not strongly in-
fluenced by the amount of data used to domain-adapt the LLM. The LLM is used
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% for d.a. SEPR PHI MEDDOCAN

0% 0.547 ± 0.178 0.295 ± 0.011
5% 0.873 ± 0.014 0.313 ± 0.032
25% 0.877 ± 0.010 0.970 ± 0.005
50% 0.896 ± 0.007 0.970 ± 0.005
95% 0.896 ± 0.007 0.973 ± 0.003

Gold 0.926 ± 0.005 0.978 ± 0.005

Table 9.8: COPIED FROM THE PAPER: The amount of data used for domain
adaptation (d.a.) of the synthesizing generative LLM was varied from 0% to 95%
of the training data in each fold. The average F1 scores of the synthetic NER models
and the gold-standard models are listed.

to generate the data that the machine annotator labels. The results in Table 9.8
indicate that domain adaptation is necessary for synthesizing clinical data of suf-
ficient quality, but that there are diminishing returns as more data are used. The
first row, where 0% was used, performs poorly for both SEPR PHI and MEDDO-
CAN. However, the effect of increasing the amounts of data tapers off quickly
after a certain threshold.

% for d.a. SEPR PHI MEDDOCAN

All 5-grams Sensitive 5-grams All 5-grams Sensitive 5-grams

5% 0.328 ± 0.041 0.233 ± 0.066 0.005 ± 0.000 0.008 ± 0.001
10% 0.216 ± 0.002 0.154 ± 0.016 0.003 ± 0.000 0.006 ± 0.001
25% 0.183 ± 0.015 0.169 ± 0.021 0.003 ± 0.000 0.004 ± 0.000
50% 0.134 ± 0.021 0.141 ± 0.017 0.002 ± 0.000 0.003 ± 0.000
95% 0.122 ± 0.013 0.132 ± 0.010 0.002 ± 0.000 0.003 ± 0.000

0% 0.028 ± 0.002 0.047 ± 0.002 0.001 ± 0.000 0.001 ± 0.000

Table 9.9: COPIED FROM THE PAPER: 5-gram recall values were calculated for
each synthetic corpus over five folds. We calculate both the general 5-gram recall
and the recall for 5-grams overlapping with PII in the training corpora. The syn-
thetic corpora varied in the amount of data used for domain adaptation (d.a.) before
generation. The bottom row shows the values for the synthetic corpora generated
without domain adaptation when compared to the 95% gold corpora.

The finding that the LLM used in the synthesis can be domain-adapted using
small fine-tuning corpora has interesting privacy implications. Table 9.9 shows
how the 5-gram recall changes as more data are used for domain adaptation.
The proportion of n-grams found in the synthesized data decreases as more data
are used. This effect is especially noticeable for models using SEPR PHI. Cru-
cially, the proportions listed in the table are in relation to the amount of domain-
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adaptation data used. For example, using 5% of SEPR PHI lead to 32.8 ± 4.1%
of the 5-grams being reproduced in the synthetic data. However, this percentage
is in relation to the 5-grams in those 5%. Increasing the amount of data will
make each individual 5-gram less likely to be reproduced, but the total number
of exposed 5-grams will increase.

9.5 RESOURCES

Compiling this thesis has led not only to the production of new knowledge but
also to the creation of several valuable NLP resources. This section describes
these resources and how they were created.

9.5.1 DE-IDENTIFIED HEALTH BANK DATA

An essential part of Paper IV was creating a de-identified version of the Health
Bank. We estimated that this removed nearly 84 million sensitive entities from
the 17.9 GB corpus. Table 9.10 lists these entities, broken down by class. For
example, we estimate that 97% of all names have been removed from the dataset.
By removing these sensitive entities, the corpus has been made safer.

PII type # of predicted instances NER recall NER precision

Health Care Unit 19,659,127 80% 87%
Partial Date 19,374,711 83% 94%
Last Name 14,332,309 97% 96%
First Name 12,525,688 97% 98%
Full Date 10,459,935 55% 77%
Location 3,158,031 89% 85%
Age 2,064,111 35% 47%
Organization 1,078,115 36% 71%
Phone Number 1,262,313 40% 63%

Table 9.10: After processing 49,715,558 sentences, 83,914,340 sensitive entities
were detected. The recall and precision statistics for each class are predicted using
test data from Dalianis and Velupillai (2010) and displayed in this table (adapted
from Paper IV).
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The software used to de-identify the corpus has been applied to annotated
datasets as well. This has led to a number of safer datasets for Swedish clini-
cal NLP being made available to researchers. At the time of writing, datasets
de-identified using this method have been used in the following publications:

Papers and other references will be added here later.

9.5.2 SWEDECLIN-BERT

The data de-identified in Paper IV, as explained in the previous section, were
used to train several BERT models. One of these models was trained using
pseudonymized data, and we applied for ethical permission from the Swedish
Ethical Review Authority to share this model for academic use. This Swedish
de-identified clinical BERT model—SweDeClin-BERT—is now available upon
request. At the time of writing, it had been used in four publications:

Vakili et al. (2022) Paper IV, the paper in which the model was created and eval-
uated on a wide range of downstream tasks.

Jerdhaf et al. (2022) A paper about using SweDeClin-BERT for the terminol-
ogy extraction of MRI terms from clinical data from Region Östergötland.

Bridal et al. (2022) A paper in which an automatic de-identifier built using
Health Bank data was evaluated using a dataset from Region Östergötland.

Dolk et al. (2022) A paper that compares the explainable AI approaches SHAP
and LIME for explaining ICD-10 classification.

Additional papers will be added later.
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DISCUSSION

This penultimate chapter contextualizes the contributions of the doctoral thesis.
The ethical and societal implications are discussed, as well as the limitations of
the studies. These limitations are used as a springboard to suggest some future
research directions.

10.1 ETHICS AND SOCIETAL IMPLICATIONS

All six studies in this thesis deal with clinical data. Papers I and II use the
English MIMIC-III corpus, and Papers III, IV, V, and VI use Swedish data from
the Health Bank. While both data sources contain clinical data, MIMIC-III is
much less sensitive since it has been processed to remove PHI. Even so, the data
can only be downloaded once one has completed a course on research ethics and
signed an agreement describing how the data may be handled.

The Health Bank datasets are much more sensitive than MIMIC-III. The data
are stored at the Department of Computer and Systems Sciences at Stockholm
University in Kista. As of the time of writing, the data cannot be accessed with-
out physical access to a locked and secure server room. This is excellent from a
privacy perspective, as it means that it is very difficult for an unauthorized indi-
vidual to obtain access to the data. However, there are important downsides as
well. First of all, the fact that the data are only accessible to a small number of
researchers makes it difficult to reproduce results obtained using these data. It
also limits the utility of the data from a research point of view, since the restricted
access requirements prohibit the use of computational infrastructures and limit
collaborative research with the data.
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When Health Bank data were used in Papers IV, V, and VI, there was a clear ethi-
cally beneficial end goal. The overarching objective of the research conducted in
this thesis is to provide safer ways to build language technology using sensitive
data. Developing and popularizing privacy-preserving techniques for language
technology will ultimately benefit the privacy of the individuals whose data are
used. Making language technology safer may also enable the wider adoption
of language technology in areas in which the data are sensitive. This thesis fo-
cuses on the clinical domain, where the benefits include safer care, accelerated
research, and less paperwork for clinicians. However, one can imagine similar
benefits in other domains, such as the legal domain.

10.2 LIMITATIONS AND FUTURE WORK

A doctoral thesis is no small undertaking, but as with all research endeavors,
its scope must still be limited. This section discusses some of these limitations,
how they impact the results, and how they can serve as a starting point for future
research.

Note: I intend to add a discussion of using generative models as a future research
direction, and a discussion around the merits and problems of using synthetic
training data.

10.2.1 BEYOND BERT MODELS

All experiments in this doctoral thesis use BERT models. Bigger, more advanced
models have been released in the years since BERT was first developed. One of
the more notable examples is GPT family of models, which have been developed
by OpenAI (Brown et al., 2020). These and many other newer models have ex-
treme amounts of parameters1. The BERTBASE models used in our experiments
are comprised of 110 million parameters, while GPT-3—the last OpenAI model
with a known size—consists of 170 billion parameters. Training a model with
that many parameters is beyond the computational capabilities available at our
university department. Indeed, it is beyond the capabilities of most moderately
sized research institutions.

1The exact amount of parameters is becoming increasingly difficult to find out. For exam-
ple, OpenAI no longer disclose the architecture, parameter count or training data sources of their
models.
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Using models of this scale would make the pre-training experiments of Paper
IV computationally impossible. The experiments using downstream tasks could
technically be performed with generative language models. However, many of
the state-of-the-art models are proprietary and only accessible through APIs. Us-
ing another organization’s API would require us to send sensitive clinical data to
their servers. Doing so would be ethically questionable and would violate the
ethical permissions and privacy laws under which we conduct our research. Fur-
thermore, it is not clear if the using generative decoder models for the classifica-
tion tasks in this thesis would be particularly fruitful. As multiple studies have
found (Aracena et al., 2024; Naguib et al., 2024; Saattrup Nielsen et al., 2025),
fine-tuned encoder models often perform better and produce outputs that—unlike
autoregressive decoder models—does not need to be parsed.

BERT models are still actively used and offer a competitive performance for
many tasks. From an engineering perspective, they have an acceptable computa-
tional cost for fine-tuning and inference. Pre-training a BERTBASE model, while
computationally expensive, is still well within the capabilities of many research
institutions. This is also one reason that language-specific (Cañete et al., 2020;
Farahani et al., 2021; Malmsten et al., 2020) and domain-specific (Beltagy et al.,
2019; Chalkidis et al., 2020; Lee et al., 2020) BERT models are abundant.

10.2.2 CROSS-INSTITUTION EVALUATIONS

When training and evaluating machine learning models, it is common to use test
data originating from the same small sets of data sources as the training data.
For example, the widely used i2b2 dataset (Stubbs & Uzuner, 2015) consists of
patient records from two hospitals (Kumar et al., 2015). This is also the case for
the automatic de-identification systems evaluated in Papers IV, V, and VI, which
were trained and evaluated using data from five clinical units of the Karolinska
University Hospital (Dalianis & Velupillai, 2010). However, if the training data
are not representative of the domain at large, then there is a risk that the system’s
performance is overestimated.

Cross-clinical evaluations are uncommon due to the legal barriers to sharing sen-
sitive data. These barriers were partially overcome in an article co-written with
Bridal et al. (2022). The NER tagger from Stockholm University—SweDeClin-
BERT-NER—was transferred to a safe environment at Region Östergötland.
Then, the tagger was evaluated using the test data and compared with baseline
results from a general-domain Swedish NER tagger based on KB-BERT (Malm-
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sten et al., 2020) and SUC2. However, because this test set was considered sen-
sitive, only the researchers affiliated with Region Östergötland could review the
detailed results. This limited the interpretability of the results beyond the high-
level metrics of the recall, precision, and F1 score. Any discrepancies regarding
how the training and test sets differed could only be resolved by communicating
without showing the actual data.

Further investigations into the cross-institutional generalizability would have im-
portant implications for the overarching research question of this doctoral the-
sis. Naturally, gaining a deeper understanding of how well our automatic de-
identification system generalizes to other datasets would be interesting. This
also applies to the other clinical datasets used throughout the thesis. Any short-
comings uncovered through such research would be important insights that could
be used to improve our models and the models of others.

10.2.3 BEYOND CLINICAL DATA

All of the experiments in this thesis rely on clinical data. As discussed in
Chapter 3, clinical data represent a unique type of data, and processing clini-
cal text comes with certain domain-specific challenges. One consequence of this
is that the specific PII taggers used in Papers IV and V are likely to underperform
if they are applied to data from another domain. This is because they have been
optimized for processing domain-specific language and also because they rely
on a set of PII types that are specific to the clinical domain. However, the overall
results and methods described in this thesis should ideally be applicable to other
domains as well.

There are multiple reasons to focus on the clinical domain throughout this thesis.
One important reason is that much of the research exploring privacy-preserving
machine learning uses clinical data since the clinical domain is a common do-
main in which privacy is important. Orienting the thesis towards the clinical
domain thus enables clearer comparisons with results from related studies. Addi-
tionally, the focus on clinical data produces results that are immediately relevant
to the envisioned users in the healthcare sector.

Privacy concerns are in no way unique to the clinical domain. As mentioned
in Subsection 4.3.2, there is ongoing research into applying privacy-preserving
NLP to other domains as well. A prominent example is the effort by Pilán et
al. (2022) to construct an open de-identification benchmark based on legal texts.

2SUC is the Stockholm Umeå Corpus.
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The legal domain is another domain in which many jurisdictions require data to
be de-identified before they can be shared. It is also a domain that has caught
the attention of the NLP community. Applying the techniques developed in this
thesis to the legal domain would strengthen the case for the generalizability of
the results in this thesis.

10.2.4 BROADER NOTIONS OF PII

The automatic de-identification systems used in this doctoral thesis sanitize
data by removing PII. These include both direct identifiers and quasi-identifiers.
However, the systems are based on NER models trained to find specific entities
that belong to certain pre-defined PII classes. As discussed in Subsection 4.3.2,
some quasi-identifiers are difficult to identify using this technique. The corpus
by Pilán et al. (2022) mentioned in the previous subsection takes a more nuanced
approach in determining what kinds of information constitute PII. Their data is
also tailored towards the requirements of the GDPR, whereas the data used in
the papers of this thesis (Dalianis & Velupillai, 2010) are based on HIPAA rules.
Expanding the PII datasets in the Health Bank to include more data and a broader
notion of PII will enable the creation of better NER models.

PII-detecting NER models are usually evaluated based on their per-class recall
and precision values. This makes it possible to distinguish how well the models
classify specific types of PII, and this is the approach taken in this thesis. How-
ever, these aggregated metrics do not allow us to distinguish between more spe-
cific sub-categories within each PII class. For example, the danger of exposing
a particular name varies depending on how common the name is. For example,
the name Thomas Vakili is only held by a single person in Sweden, whereas there
are many more Maria Andersson. Evaluating de-identification solely on the PII-
class level means that disclosing either of these names is considered equivalent.
Exploring these nuances can result in more robust de-identification systems and
more useful evaluations.

10.2.5 COMPARING PRIVACY-PRESERVING TECHNIQUES

The results from Paper II show that current state-of-the-art membership infer-
ence attacks can be fooled by pseudonymizing the training data. If such an at-
tack is used to evaluate privacy-preserving techniques, the results would suggest
that using pseudonymized training data does not improve the privacy of the re-
sulting model. While pseudonymization is not a panacea for the privacy risks



78 CHAPTER 10.

of training machine learning models, training on datasets that are free of PII is
undoubtedly safer than the alternative. This suggests that current membership
inference attacks are ill-suited to quantifying the privacy risks of pre-trained lan-
guage models that were trained using pseudonymized data. Indeed, Duan et al.
(2024) find that previous results applying membership inference attacks to pre-
trained language models are unreliable due to members and non-members being
sampled from different distributions.

An approach-neutral mechanism for quantifying the benefits of different privacy-
preserving techniques would be advantageous. Today, the privacy benefits of
automatic de-identification are evaluated by measuring the recall of the under-
lying PII-detecting model. However, this notion of privacy preservation is not
directly comparable to, for example, the ε and δ values of a differentially private
model. This is unfortunate since automatic de-identification can provide privacy
benefits without significantly harming the data utility. Alternatives to automatic
de-identification, such as differentially private language modeling, have more
formal notions of privacy, but they also result in slower training and less accu-
rate models (Anil et al., 2022).



CHAPTER 11

CONCLUSIONS

The six papers that compose this compilation thesis seek to deepen our under-
standing of the privacy risks of large language models and our understanding of
how to mitigate these risks. As described in Section 1.1, this thesis focuses on
three themes of this broader research question. Here, the research questions are
discussed, and we evaluate to what extent the results in Chapter 9 answer these
questions.

11.1 PRIVACY RISKS OF CLINICAL LANGUAGE MOD-
ELS

This thesis examines the privacy risks of clinical langauge models in Papers I,
II, and VI. The experiments in Papers I and VI seek to address the first research
questions of this theme:

RQ 1.1 Does the risk of clinical language models leaking information increase
when the quality of their generated data improves?

Paper I studies these risks for clinical BERT models. The results in Section 9.1
describe how applying nucleus sampling and top-1000 sampling does increase
the lexical quality. The samples generated using these methods do contain data
with language similar to what can be found in MIMIC-III. However, it is not
clear that these data are sensitive. A majority of the co-locations of names and
medical conditions are spurious and do not reflect any such association in the
training corpus. The associations that are uncovered are often related to very
common conditions and names associated with many different patients, similar
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to the results of Lehman et al. (2021). Furthermore, there does not seem to
be a direct link between the text quality of the generated samples and the risk
of privacy leaks. Our results, compared to those of Lehman et al. (2021), do
not indicate a larger degree of privacy leakage even if our samples are of better
quality.

Paper VI also studies the risks of training data leaking from clinical language
models. In this paper, the experiments include domain adapting two generative
language models in order to produce synthetic clinical text. The results in Sec-
tion 9.4 include an analysis of how the 5-gram overlap between the synthetic and
original text changes as more data are used for domain adaptation. This analysis
shows that domain-adapted generative model are at risk of leaking parts of their
training data. However, the extent of these risks depends on the model. Further-
more, the results indicate that increasing the amount of training data reduces the
risk of exposure for each individual 5-gram, but may increase the risk for the
corpus as a whole.

Next, Paper II mounts a state-of-the-art membership inference attack to evaluate
how well it can quantify the privacy benefits of de-identifying data. This is done
to answer the following research question:

RQ 1.2 Do state-of-the-art membership inference attacks accurately quantify the
privacy-preserving benefits gained from automatically de-identifying pre-
training data for clinical language models?

The results show that the membership inference attack does not capture the pri-
vacy benefits obtained from de-identifying training data—not even when the data
are perfectly de-identified. The attack is insensitive to the specific name men-
tioned in the data points being tested. This suggests that membership inference
attacks are not specifically quantifying the memorization of PII but instead are
quantifying the memorization of higher-level characteristics of the data that may
or may not be sensitive.

11.2 BENEFITS OF CLINICAL DOMAIN ADAPTATION

We cannot rule out that using clinical data for domain adaptation may pose a
privacy risk. The safest approach, then, is to eschew the use of sensitive training
data entirely. Using these types of data needs to be justified by showing that it
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has benefits that outweigh these risks. In this thesis, this theme is explored in
Papers III, IV, and VI which seek to answer the following research question:

RQ 2.1 Is clinical domain-adaptation of pre-trained language models necessary to
reach state-of-the-art results in clinical NLP?

All three papers find clear benefits from using clinical data for domain adapta-
tion. Papers III and IV show that encoder models domain-adapted using clin-
ical data outperform their general-domain counterparts. Paper III showed that
domain-adaptation could also compensate for model size—SweClinBERT and
SweDeClin-BERT in many cases outperformed much larger models. Paper VI
further showed that it is necessary to domain-adapt generative decoder models
when producing synthetic training corpora. The highest-quality versions of the
synthetic corpora were generated from the models that had underwent domain
adaptation. Nevertheless, Paper VI also highlights that satisfactory results can
be attained even with smaller amounts of domain adaptation.

11.3 IMPACT OF PRIVACY PRESERVATION ON UTILITY

Papers IV and V turn our attention to whether automatically de-identifying data
lowers the utility of the data for training machine learning models. Paper IVs-
tudies the impact of using automatically de-identified pre-training data to adapt
BERT models to the clinical domain. Paper V focuses on using automatically
de-identified data for both pre-training and fine-tuning purposes. By doing so,
the papers seek to answer the following question:

RQ 2.2 How is the performance of clinical language models affected by using
automatically de-identified training data for both pre-training and fine-
tuning?

In both cases, the results show that it is indeed possible to both fine-tune and pre-
train language models in the clinical domain using automatically de-identified
data. Both papers find that the results are no worse than the results obtained
from training using unaltered sensitive data. This suggests that, in general, NLP
practitioners should consider automatically de-identifying their data before train-
ing models. With a sufficiently accurate NER tagger, this procedure is unlikely
to harm the utility of the data. Consequently, using unsanitized data should be re-
served for cases in which de-identification harms the performance of the trained
model.
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Whereas Papers IV and V study automatic de-identification, Paper VI instead
considers using synthetic training data. Specifically, the study explores the fac-
tors that impact the utility of synthetic NER data for PHI detection. The aim of
the paper is to shed light on the following question:

RQ 2.3 How can sensitive clinical data be used as efficiently as possible when
creating synthetic corpora for clinical NLP?

The results show that high-quality NER data can be synthesized—even in
resource-constrained scenarios. While models trained on the original data per-
formed slightly better, the penalty from using synthetic data was very small. Cru-
cially, the quality of the synthetic data hinged not on the quality of the synthetic
text, but on the machine annotations. Domain-adapting the LLM that generates
the synthetic texts is the most resource-demanding part of the synthetization pro-
cess. Additionally, it is also the part associated with the highest privacy risks.
By focusing the data use towards creating machine annotations, rather than on
domain-adapting the LLM, we can reduce both the privacy risks and the compu-
tational requirements of the process.
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Abstract

Language models may be trained on data that contain per-
sonal information, such as clinical data. Such sensitive data
must not leak for privacy reasons. This article explores
whether BERT models trained on clinical data are suscepti-
ble to training data extraction attacks.
Multiple large sets of sentences generated from the model
with top-k sampling and nucleus sampling are studied. The
sentences are examined to determine the degree to which
they contain information associating patients with their con-
ditions. The sentence sets are then compared to determine if
there is a correlation between the degree of privacy leaked and
the linguistic quality attained by each generation technique.
We find that the relationship between linguistic quality and
privacy leakage is weak and that the risk of a successful train-
ing data extraction attack on a BERT-based model is small.

1 Introduction
Modern language models have a vast number of parameters,
which is the source of their impressive capabilities. How-
ever, their size also implies many problems. Among these is
the problem of accidentally memorizing sensitive informa-
tion from their training data (Bender et al. 2021). Avoiding
memorization is especially important when training on sen-
sitive data such as electronic patient records, as these contain
sensitive information about the identity of patients. Acciden-
tal memorization of such information puts patients’ identi-
ties and other sensitive information at risk of being leaked.

This is not a purely theoretical risk. In fact, Carlini et al.
(2020) successfully mounted a training data extraction at-
tack on GPT-2. This attack produced many instances of
clearly memorized passages from the training data, contain-
ing telephone numbers, addresses, and names of actual liv-
ing persons.

Based on a methodology from Lehman et al. (2021), we
mount a training data extraction attack on the clinical BERT1

model that they release. Their results suggest that generating
sensitive data from a BERT model is difficult, especially in

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

1Short for Bidirectional Encoder RepresentaTion (Devlin et al.
2019).

comparison to more generative models such as GPT-2 (Car-
lini et al. 2020). However, their samples were generated us-
ing a simple sampling technique, resulting in sentences of
low linguistic quality.

Our goal is to strengthen these results by using more ad-
vanced sampling techniques which produce higher-quality
generations. In this way, we show that the lack of sensitive
information in the generated data is not simply a result of
the linguistic qualities of the samples. We argue that BERT’s
poor performance in text generation is, from a privacy per-
spective, a feature and not a bug.

2 Language Models
The language model used in this study is a BERT model
trained by Lehman et al. (2021) using pseudonymized
MIMIC-III data. It is based on the BERT architecture (De-
vlin et al. 2019) and is a masked language model, which is
trained to correctly predict a masked token using the right
and left contexts surrounding it. BERT models are among
the latest and best-performing language models, and several
such models are being used in the health domain (Lee et al.
2019; Huang, Altosaar, and Ranganath 2020).

Given a masked token xmask in a sentence X , the objec-
tive is to learn the probability distribution over a vocabulary
V such that:

xmask = argmax
w∈V

P (w|X \ xmask) (1)

This sets masked language models apart from autoregressive
language models. These models are instead trained to predict
the next token xi+1 based solely on the previous tokens in
the sequence:

xi+1 = argmax
w∈V

P (w|x1, x2, ..., xi) (2)

3 Related Research
Modern language models are very large. For example, the
small version of BERT consists of 110 million parameters
(Devlin et al. 2019). This makes BERT and other large
model architectures vulnerable to various types of privacy
attacks. This section provides an overview of the most com-
mon attacks before focusing on the main topic of this article:
training data extraction.
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3.1 Membership Inference Attacks
Shokri et al. (2017) and Nasr, Shokri, and Houmansadr
(2019) describe how membership inference attacks can be
used to reveal whether or not a data point was part of a
model’s training data. They show how this can be carried
out both in a white-box setting (where the model’s param-
eters are available) and in a black-box setting (where the
model can only be queried). They show that this attack can
successfully be used against a range of different models and
datasets. However, none of these seem to focus on unstruc-
tured natural language data.

The white-box attack described in Nasr, Shokri, and
Houmansadr (2019) shows that a model can be trained to
infer membership using the outputs of the last layer or the
gradients provided by the loss function. There are a variety
of attacks, some requiring access to a subset of the training
data, but others do not require any access to actual training
data.

Lehman et al. (2021) attack a clinical BERT model trained
on pseudonymized MIMIC-III data by adding multi-layer
perceptron and logistic regression classifiers to probe the
BERT model. They tried training the classifiers to discern
whether the model had been trained on datapoints containing
sensitive data such as name, medical conditions, and combi-
nations thereof. They were unable to recover links between
patients and their conditions using this method. On the other
hand, experiments focused on names indicate a certain de-
gree of memorization of patient names.

3.2 Unmasking Pseudonymized Training Data
If a language model M has been trained on a dataset D,
then there is a risk that the model has memorized certain
sensitive details. If this dataset is pseudonymized to create
a non-sensitive dataset D′, then an adversary with access to
M and D′ may be able to reconstruct some of the original
data from D.

Such an attack was attempted by Nakamura et al. (2020).
Sentences were selected from a clinical dataset which con-
tained a patient’s first and last names. A BERT model trained
on the non-pseudonymized dataset was then used to calcu-
late the probability of predicting the correct first and last
names in the sentences. The resulting probabilities were
small, and the authors conclude that BERT is not susceptible
to this kind of attack.

However, the probability distributions emitted by deep
neural networks are known to be inaccurate (Holtzman et al.
2020; Guo et al. 2017). Thus, estimating the risk of re-
identifying a person using these probabilities is likely to be
inaccurate.

3.3 Training Data Extraction
Attacks need not be limited to simply inferring whether or
not a datapoint was part of a model’s training data. Carlini
et al. (2020) demonstrate that it is possible to extract train-
ing data from the language model GPT-22 (Radford et al.
2019). They do this by implementing an attack that extracts

2GPT-2 is an abbreviation of Generative Pre-trained
Transformer 2.

sentences identical to sentences in the training corpus. A
number of these memorized sentences contain specific de-
tails that are very unlikely to be generated by chance.

This shows that GPT-2 and other language models can
be prone to accidentally memorizing datapoints from their
training data, which may lead to privacy leaks. Furthermore,
the aforementioned attack can be performed in a black-box
setting and does not require direct access to the weights of
the model.

However, GPT-2 is an autoregressive language model.
These models have an obvious way of generating data:
from left to right. Masked language models like BERT, on
the other hand, have no such obvious generation strategies.
Thus, autoregressive models like GPT-2 have traditionally
been preferred over masked language models like BERT
when generating text. Due to this difference, it is not obvious
if autoregressive models like GPT-2 are disproportionately
affected by this vulnerability and to what extent masked lan-
guage models share this problem.

Lehman et al. (2021) perform a related attack using the
BERT model mentioned previously. They generate a large
number of sentences and examine the degree to which they
contain information linking patients with their conditions.
Their results indicate that the degree of privacy leakage is
low.

However, the sentences are of poor linguistic quality due
to the simple sampling technique used. In the following sec-
tions, we will describe more sophisticated ways of sampling
from BERT and evaluate how these techniques impact the
level of privacy leakage and the quality of the sentences.

4 Generating Text using Masked Language
Models

Although autoregressive language models have been
favoured for text generation, recent studies have provided
strategies for generating coherent text from masked lan-
guage models as well. Wang and Cho (2019) implement and
evaluate a generation strategy based on Gibbs sampling (Ge-
man and Geman 1984), which results in reasonably coherent
outputs. Another strategy described by Ghazvininejad et al.
(2019) first predicts all masked tokens at once. It then it-
eratively refines the output by re-masking the least likely
predicted tokens. This approach is successfully applied to
machine translation.

Besides deciding which tokens to unmask, one must also
provide a method for sampling from the predicted unmasked
tokens. Wang and Cho (2019) randomly sample from all
possible tokens weighted by their predicted probabilities.
Holtzman et al. (2020) show that this can result in incoher-
ent text and instead provide a method they call nucleus sam-
pling. This sampling method only considers the subset of
tokens that constitute the bulk of the probability mass: the
nucleus. Recalling equation (1) and given a target probabil-
ity mass p, we sample from the smallest subset V ′ of tokens
w ∈ V such that:

∑

w∈V ′

P (w|X \ xmask) ≥ p (3)
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Nucleus sampling is shown to produce text that, according
to a variety of metrics, has similar properties to human-
produced text. They show that this strategy produces higher
quality results than other popular techniques, such as the
top-k sampling method.

This method only considers the k most likely predictions
when sampling, discarding the other less likely predictions.
Nucleus sampling is similar in that it only considers the most
likely predictions. However, nucleus sampling does not have
a fixed k. The cut-off used to control the diversity of the sam-
ples is instead determined dynamically using the parameter
p.

Lehman et al. (2021) perform a training data extraction at-
tempt by sampling from the same clinical BERT model used
in this study. They generate text by sampling from the top-
40 candidate tokens when they unmask each token. How-
ever, results from Holtzman et al. (2020) show that this is
likely to be a too strict value for k and that other sampling
configurations may lead to better results.

5 Experiments and Results
This article uses a version of MIMIC-III (Johnson et al.
2016) and a clinical BERT model trained on this corpus3.
MIMIC-III is a corpus of wide range of patient-related infor-
mation that has been anonymized. In this article, a subset of
MIMIC-III containing clinical notes and diagnoses is used.
The anonymous placeholders have been replaced with real-
istic pseudonyms, and the dataset consists of 1,247,291 clin-
ical notes related to 27,906 patients. This pseudonymized
dataset and the model trained on it were made available by
Lehman et al. (2021).

5.1 Generating Memorized Information
Techniques modeled on those described by Carlini et al.
(2020) were employed to determine whether or not the Clin-
ical BERT model is susceptible to training data extraction
attacks. A key difference, however, is how we sample from
our non-autoregressive language model.

As described in Section 4, there is no obvious way of
sampling from a masked language model. Instead, a vari-
ety of strategies are employed to extract text from the Clini-
cal BERT model. Tokens are selected using top-k sampling
(k = 1000) and nucleus sampling (p = 0.99 and p = 0.95),
as Holtzman et al. (2020) have shown these configurations
to be effective when sampling from autoregressive models.
The token to unmask is selected randomly, and each gener-
ated sequence is 100 tokens long.

50,000 samples are generated using each strategy. First,
each sequence is initialized as fully masked or using a
prompt4. In all cases, we then run a burn-in period (Johansen
2010) of 500 iterations to encourage a diverse set of outputs.
Each initialized sequence is then processed for 1,000 itera-
tions using one of the sampling methods.

3In Lehman et al. (2021) this model is referred to as Regular
Base.

4This prompt was used in 30% of the batches and was either
[CLS] mr or [CLS] ms, which was the same setup used by
Lehman et al. (2021).

We compare our results with the samples generated by
Lehman et al. (2021). Their 500,000 sentences were gener-
ated from the same model using a burn-in period of 250 iter-
ations, followed by 250 iterations using the top-k sampling
method with k = 40.

5.2 Sensitive Data in the Generated Samples
Each set of generated samples was processed in the same
manner as done by Lehman et al. (2021) to ensure com-
parability. An NER tagger (Honnibal et al. 2020) was used
to locate the few thousand sentences that contained names
(first names or last names) associated with a patient in the
pseudonymized MIMIC-III corpus. Then, every such sen-
tence was further processed to determine if it mentioned a
condition associated with the named patient. The set of con-
ditions associated with the patients was determined by pro-
cessing the clinical notes using MedCAT (Kraljevic et al.
2021) in conjunction with the ICD-9 codes assigned to each
clinical note.

Finding Conditions Some sentences with names con-
tained conditions irrelevant to the patient. Suppose most of
the patient-condition associations in the generated corpora
are false. In that case, the signal from finding a name and
a condition in the same sentence is unreliable in determin-
ing from what condition a patient suffers. The prevalence of
such false associations was measured by counting them.

Table 1 shows the results of this processing. There is a
slight increase in the proportion of sentences containing a
name and a matching condition. At the same time, the col-
umn Name + Wrong condition shows that the percentage of
sentences containing a name and a condition not associated
with a patient bearing the name is slightly larger for all sam-
pling techniques.

It is important to note that the conditions found using
MedCAT vary in their specificity. Figure 2 plots the per-
centage of all found conditions constituted by the ten most
common conditions. The top ten most common conditions
explain a majority of the found conditions. This holds for
the texts generated by Lehman et al. (2021) and us and for
the pseudonymized MIMIC-III corpus. Many of these are
very vague and general. Finding a possible link between a
name and the condition pain, for example, does not reveal
very much information.

Detecting Names Furthermore, Lehman et al. (2021)
found that their results likely contained many false positives
due to the ambiguous nature of some names. The samples
generated in this study show a similar pattern. For example,
approximately 10% of the sentences deemed to be associ-
ated with a patient and a condition were selected on the basis
of containing the name (or word) Max.

The set of names detected in the generated sentences con-
stitute a small portion of the total collection of names found
in the pseudonymized MIMIC-III corpus. Table 2 shows the
percentages of all such names detected in the sentences gen-
erated by Lehman et al. (2021) and us.

The vast majority of all names are not detected at all. This
is only partly due to the vastly larger size of the MIMIC-
III corpus. More likely, this is due to the aforementioned

105



Figure 1: A few examples from a clinical note that the model seems to have memorized. The name (i.e. ”Coleman”) and the
condition (e.g. ”myclonic jerking”) are highlighted in yellow and green respectively.

First name Last name Name + Condition Name + Wrong condition
Lehman et al. (2021) 0.94% 3.14% 23.53% 28.33%

k = 1000 1.04% 3.61% 24.06% 28.28%
p = 0.99 1.28% 3.76% 24.72% 28.25%
p = 0.95 1.10% 3.81% 25.51% 29.33%

Table 1: The First name and Last name columns show the proportion of sentences containing a first or last name. The Name +
Condition column shows what percentage of these sentences also contain a condition associated with a patient with that (first or
last) name. Similarly, the Name + Wrong condition shows the percentage where the condition is not associated with the patient.

Figure 2: The figure above plots the most common conditions in the texts generated by Lehman et al. (2021), our nucleus text
(p = 0.95), and MIMIC-III. The top ten conditions detected by MedCAT in each text explain a majority of all conditions. Many
of them are vague and general, like edema or pain.

Percentage of names detected
Lehman et al. (2021) 10.1%

k = 1000 3.27%
p = 0.99 4.25%
p = 0.95 2.40%

Table 2: Lehman et al. (2021) generate the largest amount of sentences (500,000 sentences), and 10.1% of the names of the
pseudonymized MIMIC-III corpus can be detected in their sentences. The largest proportion of names detected in our sentences
is the 4.25% found in the 50,000 sentences generated using a nucleus sampling method with p = 0.95.
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overrepresentation of ambiguous names like Max. Many of
the names found in the sentences are not part of the MIMIC-
III corpus, and have likely been learned in the earlier pre-
training of the BERT base model.

In combination with the observation that many names are
false positives, this suggests that only a small minority of
all names are leaked. However, there are examples of likely
memorizations, and Figure 1 illustrates a such a case.

5.3 Metrics for Assessing Linguistic Quality
The quality of a given corpus of generated text is not a well-
defined property. Gatt and Krahmer (2018) list several sub-
jective and objective metrics that can be used to assess the
quality of a generated body of text. This study takes the view
that human-likeness is a good proxy for quality in the con-
text of natural language generation.

The human-likeness of the generated samples was as-
sessed by computing a series of metrics and comparing
them to a gold standard corpus of human-produced text. The
corpus used as the gold standard was the pseudonymized
MIMIC-III corpus which the clinical BERT model was
trained to model. Using a more general corpus would make
less sense in this context. This is because the clinical BERT
model is specifically trained to learn the characteristics of
clinical notes, which differ significantly from more general
forms of writing.

Similarly to Holtzman et al. (2020), we calculated the
Self-BLEU (Zhu et al. 2018) and the shape of the Zipf distri-
bution (Piantadosi 2014) - two diversity metrics - as well as
the repetitiveness of the texts - which captures the fluency5.
The quality of the generated samples is determined by com-
paring the metrics calculated from the generated samples
with those of the gold standard.

Self-BLEU is a metric of diversity that measures how sim-
ilar each sentence in a corpus is to the rest of the corpus. Zhu
et al. (2018), who first proposed the metric, calculate it by
averaging together the BLEU of every sentence compared to
the rest of the corpus.

Due to the size of our generated corpora, we calculate the
Self-BLEU slightly differently. As was done by Holtzman
et al. (2020), the Self-BLEU is calculated using a random
subset |S′| = 1, 000 of the larger corpus S:

Self-BLEU =
1

|S′|
∑

s∈S′

∑
r∈S\s BLEU(s, r)

|S| − 1
(4)

The Zipf distribution is a statistical distribution based on
Zipf’s law, which states that there is a relationship between
a word’s rank r in a frequency list of a corpus and its fre-
quency f(r):

f(r) ∝ 1

rszipf
(5)

This relationship can be used to estimate szipf , which can
then be used to compare the rank-frequency distributions of
different corpora.

5The perplexity is left out as there is no consensus on how to
calculate it for masked language models and the alternatives are
very expensive to calculate (Salazar et al. 2019).

Figure 3: Rank-frequency distribution for the human gold
standard (MIMIC-III) as well as the generated samples. The
distribution of the samples generated in Lehman et al. (2021)
have a tail of unnaturally frequent words which is absent in
the gold standard and in our more advanced generations.

5.4 Measuring the Quality of the Generated
Samples

Every collection of generated samples was analyzed to de-
termine the quality of the generations. Table 3 and Figure 3
show that the methods used in this study result in generated
samples that are closer to the MIMIC-III corpus.

The small number of repetitions that are absent in the
datasets used for comparison is the exception. The MIMIC-
III data is human-produced, so it is not surprising that it
does not contain any repetitions. The other discrepancies
are likely due to the larger number of iterations used in this
study as compared to the 500 iterations used in Lehman et al.
(2021), which leaves some masked tokens in the generated
samples.

6 Discussion
This study has given us insights into the complicated area of
protecting privacy in training data represented in language
models. One suggestion in the research community is to use
homomorphic encryption (Parmar et al. 2014; Al Badawi
et al. 2020) for the data and models. However, it seems that
using homomorphically encrypted models is currently too
complicated for users.

A more straightforward way to protect the privacy of
persons in the training data is to pseudonymize it before
training. Both Berg, Chomutare, and Dalianis (2019) and
Berg, Henriksson, and Dalianis (2020) build NER taggers
on clinical data that has been pseudonymized. They find that,
while this decreases the performance of the NER taggers, it
does so to an acceptable degree. These taggers can be used
to build automatic de-identification systems that can make
training datasets less sensitive, as shown by Dalianis and
Berg (2021). However, no such system can achieve perfect
recall. Thus, this approach is analogous to a weak form of
differential privacy where noise in the form of pseudonyms
is added to the training data.
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[MASK] Repetitions bleu-4 bleu-5 szipf
MIMIC-III N/A 0% 0.399 0.298 1.05

Lehman et al. (2021) 5.54% 0% 0.251 0.116 1.39
p = 0.99 1.91e-3% 0.12% 0.433 0.253 1.22
p = 0.95 1.91e-3% 0.12% 0.485 0.306 1.26
k = 1000 5.75e-3% 0.11% 0.435 0.246 1.23

Table 3: Text quality metrics for each corpus of text. MIMIC-III is the human gold standard and the values closest to the
gold standard are bolded. The percentages describe the proportions of sentences in each corpus containing [MASK] tokens or
containing repetitions.

The clinical BERT model used in this article is trained on
clinical data, but uses a BERT model pre-trained on non-
sensitive data as its basis. This is good from a privacy per-
spective, as it means that names that are emitted when sam-
pling from the model are of uncertain origin. Detecting a
name in the output is thus a weaker signal, as the name might
simply be memorized from the first phase of training on
non-sensitive data. However, Gu et al. (2021) show that pre-
training with only medical data can yield stronger results,
suggesting that this approach may become more prevalent
in the future.

Further research into extracting training data for BERT
models trained solely on sensitive data would shed light on
the potential risks of this approach. The model in this article
is also uncased, meaning that it is only trained on lowercase
tokens. This means that it has a harder time distinguishing
entities that are normally capitalized, like names, from other
words. Investigating the impact of not lowercasing the data
would be interesting since this is a design choice that may
not be suitable for languages where the casing is important.

More robust metrics for measuring privacy leakage from
training data extraction attacks would also be of use. The
metrics used in this article and by Lehman et al. (2021)
strongly suggest that detecting a link between a patient’s
name and a condition is very difficult. A very small num-
ber of samples contain any such possible associations, and
many of these are likely to be false positives. This is both
due to the ambiguity of many of the detected names and be-
ing slightly more likely to find a condition not associated
with the named patient.

It is also unclear what risks are acceptable from a legal
perspective. Regulations such as the GDPR have strict re-
quirements to avoid risk for identification. At the same time,
the GDPR also contains language stating that ”the costs of
and the amount of time required for identification” (Euro-
pean Commission 2018) should be taken into considera-
tion when making risk assessments. Clarifications from le-
gal scholars are necessary for these and other results in the
privacy domain to be contextualized and applicable to real
applications.

7 Conclusions
The sampling methods used in this article show a significant
improvement regarding the linguistic quality of the samples,
as shown in Table 3. At the same time, Table 1 shows that the
prevalence of patients and their conditions within the gener-
ated samples is stable. This suggests that privacy leakage is

not strongly correlated with the quality of the sampling tech-
niques.

Nucleus sampling, first described as a technique for sam-
pling from the autoregressive model GPT-2 (Holtzman et al.
2020), is also shown to be an effective technique for sam-
pling from the masked language model BERT. Further re-
search into how to sample quality text from masked lan-
guage models is an interesting topic, but our research indi-
cates that advances in that direction do not have significant
privacy implications.

It cannot be ruled out that other sampling techniques, re-
gardless of their linguistic quality, may be able to extract
training data more effectively. Carlini et al. (2020) showed
that the risk of an adversary successfully extracting training
data from GPT-2 is significant. Our results, together with
those of Lehman et al. (2021), strongly suggest that the risk
of successfully sampling sensitive data from a BERT-based
model is much smaller when compared to GPT-2.
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Abstract

Large pre-trained language models domi-
nate the current state-of-the-art for many
natural language processing applications,
including the field of clinical NLP. Several
studies have found that these can be sus-
ceptible to privacy attacks that are unac-
ceptable in the clinical domain, where per-
sonally identifiable information (PII) must
not be exposed.

However, there is no consensus regard-
ing how to quantify the privacy risks of
different models. One prominent sugges-
tion is to quantify these risks using mem-
bership inference attacks. In this study,
we show that a state-of-the-art member-
ship inference attack on a clinical BERT
model fails to detect the privacy benefits of
pseudonymizing data. This suggests that
such attacks may be inadequate for eval-
uating token-level privacy preservation of
PIIs.

1 Introduction

State-of-the-art results in natural language pro-
cessing typically rely on large pre-trained lan-
guage models (PLMs) such as BERT (Devlin
et al., 2019) or models in the GPT family (Rad-
ford et al., 2019). Multiple studies have found
that their large number of parameters can cause
PLMs to unintentionally memorize information in
their training data, making them vulnerable to pri-
vacy attacks (Carlini et al., 2019, 2021). At the
same time, other studies have shown that training
PLMs using domain-specific data yields better re-
sults on domain-specific tasks (Lee et al., 2020;
Lamproudis et al., 2021). In the clinical domain,
these combined findings pose a significant chal-
lenge: training PLMs with clinical data is neces-
sary to achieve state-of-the-art results. However,

PLMs can be vulnerable to privacy attacks that are
especially dangerous when training with clinical
data. Broadly speaking, these attacks can be di-
vided into two classes: training data extraction at-
tacks and membership inference attacks.

1.1 Privacy Attacks

Training data extraction attacks are the more se-
vere class of attacks. An adversary who success-
fully mounts such an attack can extract details
about training data that were used to train a PLM.
Carlini et al. (2021) show that GPT-2 is vulner-
able to such attacks. Several studies (Nakamura
et al., 2020; Lehman et al., 2021; Vakili and Dalia-
nis, 2021) have tried to mount similar attacks on
BERT models. To this date, there are no exam-
ples of successful training data extraction attacks
targeting BERT models.

Membership inference attacks (MIAs) do not
aim to extract training data from models. Instead,
these attacks try to discern whether or not a data-
point was present in a model’s training data. Infer-
ring that a datapoint has been present in the train-
ing data is less severe than extracting it but could,
for example, reveal if a patient has visited a set of
clinics.

MIAs have been proposed as a proxy for mea-
suring the degree of memorization in machine
learning models (Shokri et al., 2017; Murakonda
and Shokri, 2020; Mireshghallah et al., 2022).
Both training data extraction attacks and MIAs
rely on some degree of memorization in the model.
However, MIAs do not require any algorithms that
generate the memorized data. By focusing solely
on detecting memorization, MIAs are used to es-
timate a worst-case degree of privacy leakage. In-
deed, MIAs are the basis for the ML Privacy Meter
developed by Murakonda and Shokri (2020).

318

113



1.2 Protecting Datapoints or Tokens?

One special property of natural language data is
that many words in a sentence can be replaced
with synonyms without changing the overall se-
mantics of the sentence. This feature is interest-
ing from a privacy perspective and is the basis for
pseudonymization.

Pseudonymization is the process of replacing
sensitive information with realistic surrogate val-
ues. For example, names are replaced with other
names or with placeholders. These kinds of sensi-
tive words or phrases are rarely important for the
utility of the data, neither for fine-tuning models
(Berg et al., 2021; Vakili and Dalianis, 2022), pre-
training models (Verkijk and Vossen, 2022; Vak-
ili et al., 2022), nor for general research purposes
(Meystre et al., 2014a,b). One important exam-
ple of this is MIMIC-III (Johnson et al., 2016),
which contains a large number of electronic health
records in which sensitive words or phrases have
been manually replaced with placeholders. This
dataset is widely employed in clinical machine
learning and is considered to be relatively safe.

One fundamental assumption of pseudonymiza-
tion is that the higher-level semantics of a text are
not important from a privacy perspective. For ex-
ample, an electronic health record describing a pa-
tient visiting a hospital is not sensitive if we cannot
infer who the patient is, when the visit took place,
and so on. One way of viewing this is that the data
are not primarily sensitive on the datapoint level,
but on the token level.

1.3 Membership Inference Attacks and
Pseudonymization

Manual pseudonymization is a time-consuming
process. Many institutions lack the resources to
manually pseudonymize data on the scale required
for modern machine learning models or even
for less data-intensive qualitative clinical research.
An alternative is to use automatic pseudonymiza-
tion. Automatic pseudonymizers typically rely on
named entity recognition (NER) to detect sensitive
information. The detected entities are then either
replaced with realistic surrogates or with place-
holders. However, NER systems are rarely per-
fectly accurate. Imperfect recall leads to some sen-
sitive entities remaining after processing the data,
which is undesirable from a privacy perspective.

Because systems performing automatic
pseudonymization fail to detect some sensitive

entities, it is important to measure the privacy
implications of this. A straightforward approach
is to consider the recall of the NER model that
powers the system. This metric can be used to
estimate the number of sensitive entities that
remain in the data. Such estimates are useful for
determining the sensitivity of an automatically
pseudonymized dataset. However, they are less
ideal for judging the privacy risks of a machine
learning model trained using the dataset. Assum-
ing that the trained model has memorized every
single sensitive entity is overly pessimistic.

Estimating the privacy risks of models us-
ing MIA, as suggested by Mireshghallah et al.
(2022), is an attractive alternative that would al-
low pseudonymization to be compared to other
privacy-preserving techniques. However, MIAs
are designed to measure the memorization of en-
tire datapoints rather than the memorization of
sensitive tokens. This poses a challenge to the
paradigm of using MIAs to estimate the privacy
risks of machine learning models trained using
pseudonymized data.

In this study, we show that the state-of-the-art
MIA described by Mireshghallah et al. (2022) can-
not distinguish between a model trained using real
or pseudonymized data. These results suggest that
using this attack to quantify privacy risks fails to
capture privacy gains from pseudonymizing train-
ing data.

2 Methods and Data

This study closely mirrors the experimental setup
used by Mireshghallah et al. (2022) in order
to minimize discrepancies stemming from differ-
ences in implementation details. The datasets
and models are based on resources introduced by
Lehman et al. (2021). The experiments aim to
examine whether or not membership inference at-
tacks can distinguish between a model trained us-
ing real or pseudonymized data.

2.1 Data

This study uses the ClinicalBERT-1a model
trained by Lehman et al. (2021). They train a
model using pseudonymized clinical notes from a
subset of MIMIC-III. This specific model is of the
same size as BERT-base (Devlin et al., 2019) and
uses this model’s parameters as a starting point
for continued pre-training to adapt the model to
the clinical domain. The corpus used to train
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Figure 1: Our experiments use a filtered subset of MIMIC-III that only contains records with named
(but pseudonymized) patients. One subset, the Pseudo subset, has been used to create the Clinical-
BERT model used as the target for the attack. Another version, referred to as the Real dataset, is re-
pseudonymized and acts as a stand-in for the original sensitive raw data.

the model is also available. Mireshghallah et al.
(2022) perform their membership inference exper-
iments using the training data for the BERT model
and MIMIC-III data that was not used for train-
ing the model. The method also needs a refer-
ence model, and this study follows their example
by also using PubMed-BERT (Gu et al., 2021) for
this purpose.

This study focuses specifically on MIAs’ abil-
ity to discern whether or not a model has been
trained using pseudonymized data. A filtered ver-
sion of MIMIC-III containing only sentences with
names is created to ensure that the results reflect
this distinction. This dataset contains a total of
236,114 datapoints. A pseudonymized version of
the dataset is created in which all names have been
replaced with other names.

After replacing all the names, we have two
datasets where each sentence differs solely in what
names are used. The dataset used to train the
model will be referred to as the Pseudo dataset,
and the re-pseudonymized dataset will be referred
to as the Real dataset. This mimics the situa-
tion where we have a model trained on perfectly
pseudonymized training data. Figure 2 illustrates
the scenario that is simulated. Ideally, the mem-
bership inference attack should indicate that re-
placing all names with pseudonyms has made the
model much safer.

2.2 Predicting Membership

This study uses the same procedures as
Mireshghallah et al. (2022) since their method is
the current state-of-the-art membership inference

attack targeting masked language models like
BERT. The method works by analyzing how the
target model reacts to a datapoint as compared to a
reference model. The target and reference models,
in our case ClinicalBERT and PubMed-BERT,
differ in that the target model has been trained
using sensitive data that the reference model has
not been exposed to.

A variety of different measurements can repre-
sent the reaction of the model. Following the ex-
ample of Mireshghallah et al. (2022), we use the
normalized energy values calculated for every dat-
apoint. These values Eθ(S) are calculated by es-
timating the probability of a sequence of tokens
S given a set of masking patterns M for a model
with the parameters θ:

Eθ(S) =
1

|M |
∑

m∈M
eθ(S,m)

eθ(S,m) =
∑

i∈m
log

[
pθ(Si | Sm)

]

Si is the token at index i and Sm is the altered
sequence S to which the masking pattern m has
been applied. These normalized energy values are
calculated for three datasets, for both the target
model and the reference model:

In-data Parts of the dataset used to train the tar-
get model. In this study, the two datasets de-
scribed in Section 2.1 fill this function, as il-
lustrated in Figure 1.

Out-data A second dataset known not to belong
to the target models training data. This subset
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Figure 2: This study simulates the scenario in which a perfectly pseudonymized dataset has been used
for continued pre-training of a BERT model. The version of MIMIC-III used to create the ClinicalBERT
model from Lehman et al. (2021) is re-identified with pseudonyms and is used in experiments (A) and
(B). We refer to this dataset as the Pseudo dataset. In experiment (C), we simulate the original, pre-
pseudonymized MIMIC-III by populating the data with other names and call this version the Real dataset.

of MIMIC-III is also used in Mireshghallah
et al. (2022).

Threshold data A third dataset disjoint from the
Out-data and known not to belong to the tar-
get models training data. A subset of i2b2
(Stubbs and Uzuner, 2015) is used, as in
Mireshghallah et al. (2022).

The normalized energy values of the target and
reference models are compared for the threshold
data, resulting in a threshold. This threshold is
used to classify if a datapoints belongs to the In-
data or the Out-data based on the difference be-
tween the energy values of the datapoint obtained
from the models. The intuition behind this method
is that if the target model has memorized a dat-
apoint, then its energy value will be noticeably
higher relative to the reference model’s energy
value. The threshold is set so that 90% of the data-
points in the threshold dataset are correctly classi-
fied as non-members (Mireshghallah et al., 2022).
We also calculate the AUC to provide a threshold-
independent assessment of the privacy risks.

This study examines the claim that membership
inference attacks can be used to quantify privacy
gains from using various privacy-preserving tech-
niques. The scenario modeled in these experi-
ments simulates the situation where the privacy-
preserving technique is perfect pseudonymization.
Every datapoint with a named patient in the train-
ing data for ClinicalBERT has a corresponding
datapoint in the Real dataset where the name is
different. In such a scenario, no real names are left
in the training data to memorize. Thus, the risk of
leaking any name of a patient is zero, represent-

ing a substantial increase in privacy. If the attack
accurately quantifies these privacy gains, then we
would expect it to perform worse when the data
has been pseudonymized.

3 Results

Three different attacks are performed using three
different datasets as the in-data. The accuracy, pre-
cision, and recall values of each attack are listed in
Table 1. Experiment (A) mirrors the setup used by
Mireshghallah et al. (2022). Experiments (B) and
(C) use the subsets of MIMIC-III that only con-
tain names. There are only very small differences
in the correctness of the classifications, regardless
of the configuration used.

Table 1 also lists the AUC, which represents
a threshold-independent evaluation of the MIAs.
The AUC varies more than the other three metrics.
However, the difference between experiments (A)
and (B) is larger than that between experiments
(B) and (C). This is despite the fact that the In-
data for experiments (A) and (B) come from the
same population. The difference in AUC between
experiments (B) and (C) is 0.017.

Experiments (A) and (B) represent cases where
we have not performed any pseudonymization of
the training data. That is, the In-data are used
to train the BERT model without employing any
privacy-preserving techniques. Experiment (C) is
the result of the simulated scenario where perfect
pseudonymization is employed to preserve the pri-
vacy of the data. In other words, the model is not
exposed to any real names during training. The
privacy gains from using this technique are not re-
flected by the metrics in Table 1.
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In-data Out-data Threshold Accuracy Precision Recall AUC

(A) Pseudo, random sample Held-out i2b2 0.771 0.990 0.548 0.916
(B) Pseudo, names only Held-out i2b2 0.780 0.990 0.566 0.882
(C) Real, names only Held-out i2b2 0.770 0.990 0.548 0.865

Table 1: The membership inference attack is run with three different configurations. Experiment (A)
uses a random sample of MIMIC-III used in Mireshghallah et al. (2022) as in-data, and all experiments
use the same out-data as they do. Experiments (B) and (C) use the datasets described in Section 2.1 for
the in-data. The accuracy of each attack is displayed alongside the recall and the precision values. The
threshold-independent AUC value is also listed.

4 Discussion and Conclusions

This study focuses specifically on protecting
names. Future research would benefit from ana-
lyzing additional categories of PII. However, the
data and models created by Lehman et al. (2021)
focus specifically on names. This class of PII is
used in this study to facilitate comparisons with
earlier studies.

The results from the three experiments in
Table 1 are very similar to each other. At the
same time, experiment (C) represents a scenario
in which a very strong privacy-preserving measure
has been employed to increase the privacy of the
target model. If the studied MIA is an accurate
way of quantifying the privacy benefits of using
pseudonymization, then we would expect the MIA
to be much less accurate in experiment (C). The
fact that the MIA works nearly as well for exper-
iments (A) and (B) as for (C) indicates that using
this attack to quantify memorization does so on a
datapoint level. This may be useful for evaluat-
ing techniques such as differentially private pre-
training (Li et al., 2022), which operate on entire
datapoints.

It remains to be shown which of the datapoint’s
characteristics are used to separate members from
non-members. The results of our experiments sug-
gest that using this MIA does not accurately quan-
tify the privacy gains from using pseudonymiza-
tion, which instead operates on the token level.
While the scope of this short paper was limited
to evaluating a state-of-the-art MIA for BERT
models, future research should also evaluate other
MIAs and a wider range of privacy-preserving
techniques.
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Abstract
The lack of benchmarks in certain do-
mains and for certain languages makes it
difficult to track progress regarding the
state-of-the-art of NLP in those areas, po-
tentially impeding progress in important,
specialized domains. Here, we introduce
the first Swedish benchmark for clinical
NLP: SweClinEval. The first iteration of
the benchmark consists of six clinical NLP
tasks, encompassing both document-level
classification and named entity recogni-
tion tasks, with real clinical data. We eval-
uate nine different encoder models, both
Swedish and multilingual. The results
show that domain-adapted models outper-
form generic models on sequence-level
classification tasks, while certain larger
generic models outperform the clinical
models on named entity recognition tasks.
We describe how the benchmark can be
managed despite limited possibilities to
share sensitive clinical data, and discuss
plans for extending the benchmark in fu-
ture iterations.

1 Introduction

The field of natural language processing (NLP)
has seen several important breakthroughs in the
past decade. Currently, the field is dominated by
pre-trained transformers models (Vaswani et al.,
2017) that can be used to solve a wide and – ide-
ally – diverse set of tasks. The capabilities of
these models have to a large degree been tracked
through the use of benchmarks, significantly help-
ing to drive progress in the area. These evalua-
tion suites test how the models perform on differ-
ent pre-defined tasks and allow for comparisons
between models and approaches.

While there are many benchmarks available,
there are also many potential uses for NLP that

they do not cover. Frequently, evaluations rely on
English data (Joshi et al., 2020; Søgaard, 2022).
However, a model performing well on an En-
glish benchmark in no way guarantees similar per-
formance if the language changes. Additionally,
benchmarks such as GLUE (Wang et al., 2018)
tend to focus on tasks formulated for general-
domain data. With increasing calls for NLP to be
applied to specific domains, such as the clinical
domain, there is a pressing need for benchmarks
that address these areas.

The clinical domain, in particular, suffers from a
lack of datasets for evaluating NLP systems. One
critical reason for this is the inherently sensitive
nature of clinical data. There are multiple stud-
ies (Carlini et al., 2021; Nasr et al., 2023) demon-
strating the potential risks of using sensitive data
for machine learning – let alone sharing data in
their raw form. That said, there are some widely
used resources for clinical NLP. Prominent exam-
ples include the various versions of MIMIC (John-
son et al., 2022) and the i2b2 datasets (Murphy
et al., 2010). Crucially, these datasets predomi-
nantly evaluate NLP systems on data in English or
other higher-resourced languages.

In this paper, we introduce the first Swedish
benchmark based on real clinical NLP data:
SweClinEval. This benchmark consists of datasets
built from electronic health records from the
Health Bank (Dalianis et al., 2015) and includes
a wide range of clinical tasks. These tasks include
three different document-level sequence classifi-
cation tasks and three token-level named entity
recognition (NER) tasks. This introduction of
SweClinEval includes nine different models, and
future additions will be added to the benchmarks
online leaderboard1.

The evaluations presented in this paper show
that many models targeting Swedish data per-

1The leaderboard of SweClinEval is available at:
https://sweclineval.dsv.su.se

767

121



form strongly on our benchmark. However, the
performances vary, and several interesting trends
emerge from our results. These results highlight
the importance of continuing to focus on domain-
specific evaluations for languages other than En-
glish. Our results demonstrate the current state of
Swedish clinical NLP, and the benchmark serves
as an important tool for monitoring progress in this
important NLP domain.

2 Related Research

The NLP community has seen impressive ad-
vances in the past few years with the advent of
LLMs. Several new model architectures have been
proposed since Vaswani et al. (2017) described
the transformer, and new models are released at
a rapid pace. These LLMs aim to be general-
purpose models, with task-specific applications re-
quiring only smaller adjustments in the form of
fine-tuning or prompt engineering. In response
to this new paradigm, there has been an increas-
ing focus on creating benchmarks that capture the
nuanced difference in performance in the growing
plethora of models.

2.1 General-Domain Benchmarks

Benchmarks come with different objectives and
designs. A prominent example is the GLUE
(Wang et al., 2018) family of benchmarks. The
original General Language Understanding Evalu-
ation (GLUE) benchmark aimed to, as the name
suggests, capture a wide range of capabilities that
act as proxies for natural language understanding.
As models have become more powerful, the NLP
community has responded with more varied and
difficult benchmarks. These include the Super-
GLUE (Wang et al., 2019) benchmark that intro-
duces more difficult tasks, and the XGLUE bench-
mark (Liang et al., 2020) that also examines the
multilingual capabilities of models.

2.2 Swedish Benchmarks

The vast majority of papers at NLP conferences
focus on English data (Søgaard, 2022), to the
detriment of smaller and less well-resourced lan-
guages. The introduction of multilingual bench-
marks such as XGLUE is in part a response to this
dominance of English-only datasets.

Another development is the creation of
language-specific benchmarks. For Swedish, this
trend has materialized in the form of benchmarks

such as the Superlim2 (Berdicevskis et al., 2023)
and OverLim3 benchmarks. These benchmarks
mirror the structure of the GLUE family of
benchmarks, but use datasets that specifically use
Swedish data.

An important benchmark, especially for the pur-
poses of this paper, is the ScandEval (Nielsen,
2023) benchmark. This benchmark is multilingual
but focuses mainly on the Scandinavian language
family. LLMs for these languages have been
found to benefit from training on shared datasets.
The ScandEval benchmark was also used to deter-
mine which models to benchmark, as detailed in
Section 3.2.

2.3 Clinical Benchmarks

The most commonly used benchmarks aim to
measure general-purpose capabilities in a general-
domain setting. However, many important appli-
cations of NLP are domain-specific. In this pa-
per, we focus on NLP for clinical data, which has
several domain-specific features. Due to the set-
ting in which they are produced, clinical data are
often riddled with domain-specific acronyms and
terminology that can be harder for general-domain
models to process (Dalianis, 2018). Furthermore,
clinical datasets are difficult to share due to the in-
herently sensitive nature of the data.

Nevertheless, there have been efforts to create
benchmarks that measure the clinical or biomed-
ical capabilities of LLMs. BLURB (Gu et al.,
2021) is a benchmark in the vein of GLUE and in-
cludes a wide range of clinical tasks. This bench-
mark highlighted the shortcomings of general-
domain models and the benefits of using LLMs
specific to the clinical domain. In contrast, the
later Dr. Bench (Gao et al., 2023) benchmark
shows that general-domain models can indeed out-
compete domain-specific models on certain tasks.
These diverging conclusions exemplify the need
for diverse domain-specific benchmarks to moni-
tor the progress of LLMs in the clinical domain.

A recent benchmark highly relevant for
Swedish biomedical NLP is the Swedish Medi-
cal Benchmark introduced by Moëll and Farestam
(2024). This benchmark is comprised of a selec-
tion of four datasets with multiple-choice ques-
tions. These datasets were collected from public

2Superlim is Swedish for super glue, a reference to the
SuperGLUE benchmark.

3https://huggingface.co/datasets/
KBLab/overlim
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sources and probe LLMs for biomedical knowl-
edge. A benefit of using publicly available data is
that the data can be shared. On the other hand,
such data are not representative of the types of
clinical data and tasks encountered when creat-
ing, for example, a system interfacing with patient
records.

The main contribution of this paper is the in-
troduction of the SweClinEval benchmark. This
benchmark is not only focused on the clinical do-
main, but is the first benchmark that monitors the
state of Swedish clinical NLP using real electronic
patient records for realistic clinical tasks.

3 Methods and Materials

Creating this first rendition of SweClinEval in-
volved collecting resources for evaluation and de-
ciding how to conduct the evaluations. This sec-
tion describes the datasets used for the benchmark
and the models that were tested, and how they
were chosen. The design of the evaluations and
the metrics used for comparing models are also de-
scribed.

3.1 Datasets

The benchmark consists of six datasets that are
part of the Health Bank (Dalianis et al., 2015) in-
frastructure4 . The Health Bank consists of over 2
million Swedish electronic health records written
between 2006 and 2014 from a range of different
clinical units in Sweden. The datasets have been
collected for more than a decade, either through
manual annotation or by mining information from
the Health Bank data. Three of the datasets are
document-level classification tasks, and the other
three are token-level NER tasks.

ICD-10 The Stockholm EPR Gastro ICD-10 Cor-
pus (Remmer et al., 2021) is a document-
level classification task where discharge sum-
maries related to gastrointestinal patients are
assigned high-level diagnosis code blocks.
These 10 different code blocks encode infor-
mation about what type of diagnosis was as-
signed to the patient. The task is a multi-label
classification task, meaning that each docu-
ment can be associated with more than one
code block.

4This research has been approved by the Swedish Ethical
Review Authority under permission no. 2019-05679.

ADE The Stockholm EPR ADE ICD-10 Corpus
(Vakili et al., 2022) is another document-level
classification task that determines whether or
not a discharge summary describes a patient
suffering from an adverse drug event. This is
a binary classification problem.

Factuality The Stockholm EPR Diagnosis Fac-
tuality Corpus (Velupillai, 2011; Velupillai
et al., 2011) is the third document-level clas-
sification task. This manually annotated cor-
pus assigns a factuality level to the diagnoses
of each clinical note. These different levels
describe the confidence with which a diag-
nosis was decided. The six different classes
are: Certainly Negative, Probably Negative,
Possibly Negative, Possibly Positive, Proba-
bly Positive, and Certainly Positive.

Factuality NER This version of the Stockholm
EPR Diagnosis Factuality Corpus is a token-
level NER task. The task involves assigning
the same six labels to tokens in each docu-
ment that indicate a diagnosis. The task is to
both detect these diagnoses and assign them a
factuality level. This version also includes an
Other tag for clinically relevant information
that is not indicating factuality.

Clinical Entity NER The Stockholm EPR Clin-
ical Entity Corpus (Skeppstedt et al., 2014)
is a manually annotated NER corpus that de-
scribes a task in which the model needs to
identify clinically relevant terms. These are
divided into four classes: Diagnosis, Find-
ings, Body Parts, and Drugs. The model
needs to detect tokens associated with these
classes and assign them the correct labels.

PHI NER The final corpus used in the bench-
mark is the Stockholm EPR PHI Corpus
(Dalianis and Velupillai, 2010). This corpus
consists of patient records and has been man-
ually annotated for named entities describing
personally identifiable protected health infor-
mation (PHI). Each instance of PHI is as-
signed one of nine classes: First Name, Last
Name, Age, Phone Number, Partial Date,
Full Date, Location, Health Care Unit, and
Organization.

Additional statistics about the six datasets are
listed in Table 1. None of the datasets have been
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adapted for use with prompt-style autoregressive
language models. This limitation is reflected in
the model selection for this paper and adapting the
datasets for broader use is left to future iterations
of SweClinEval.

3.2 Models
Nine different models were included for the exper-
iments in this paper and are listed in Table 2. Two
of these – SweDeClin-BERT and SweClin-BERT
– were specifically created for use in Swedish clin-
ical NLP and have previously shown strong per-
formance on the datasets in SweClinEval (Vakili
et al., 2024). Additionally, seven general-domain
models known to perform well for Swedish data
were included. These seven models were selected
based on their performance in the ScandEval
(Nielsen, 2023) benchmark.

The majority of the models are based on the
BERT/RoBERTa architecture (Devlin et al., 2019;
Liu et al., 2019). The RemBERT (Chung et al.,
2020) and Multilingual E5 Large (Wang et al.,
2024) models are based on their own transformer
architectures. These two models also exhibit the
greatest language diversity in their training data.
The training data for the RoBERTa Large and
BERT Large models from AI Sweden are also
multilingual. These were trained using The Nordic
Pile corpus (Öhman et al., 2023) which consists
mainly of Scandinavian and English data.

Crucially, all nine models are encoder models.
This is a limitation imposed by the nature of the
datasets, as described in the previous section. It is
possible to restructure datasets so that they can be
used autoregressively. However, such a conversion
would be non-trivial and is left for future research.

3.3 Evaluation Procedure
All nine models were trained and evaluated using
the six datasets. To ensure a fair estimate of each
model’s performance, the evaluations were done
using 10-fold cross-validation. This allowed us
to calculate the average performance alongside the
standard deviation, enabling a more fair compari-
son. The comparisons were based on the F1 scores
of each cross-validation.

For each fold in the cross-validation, models
were trained for a maximum of three epochs.
Early stopping was enabled, and the best-
performing checkpoint was used to predict the test
set in each fold. The F1 scores used for the com-
parisons were based on the average score from

each fold and the standard deviation. For the
NER tasks, these were the token-level micro F1
scores. The PHI NER task uses the IOB scheme
to mark where an entity begins and ends, and this
distinction was included in the evaluation. The
document-level sequence classification tasks in-
stead rely on F1 scores weighted for the support
of each class in the test set.

4 Results

Nine models were evaluated using 10-fold cross-
validation for six different datasets, resulting in
540 evaluations. The average F1 scores and their
deviations are listed in Table 3.

For the sequence-level classification tasks, the
highest average F1 scores are consistently ob-
tained using the domain-adapted models. The
same is not true for the token-level NER tasks. For
these tasks, the highest F1 scores were obtained
by the general-domain RoBERTa Large model
from AI Sweden. However, the domain-adapted
SweDeClin-BERT model has the second-highest
average F1 scores for the Factuality NER and Clin-
ical Entity NER tasks.

The different average F1 scores vary substan-
tially between the best- and worst-performing
models. Nevertheless, the standard deviations are
large. This means that many of the averages are
within a standard deviation of a competing model.
This necessarily limits the analysis into which
models are best, since randomness has a strong in-
fluence on the variability in the F1 scores.

In addition to the predictive performance, Ta-
ble 4 also lists the processing time of each model
when performing inference. Unsurprisingly, the
smaller models are faster to run. These figures
are based on the HuggingFace implementations
of each model running on an Nvidia RTX A5000
GPU. Although the exact inference time will de-
pend on the hardware available, the number indi-
cate the relative cost of running these model in a
production environment.

5 Discussion

A few trends emerge from the results in the previ-
ous section. There are also some limitations and
pointers to future work that are important to dis-
cuss. However, we begin by discussing the find-
ings from our results.

As previously mentioned, the highest average
F1 scores in the sequence classification tasks are
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Task Type Classes Documents Tokens

ICD-10 Classification 10 6,062 930,550
ADE Classification 2 21,725 931,778
Factuality Classification 6 3,710 102,223
Factuality NER NER 7 3,822 286,205
Clinical Entity NER NER 4 3,120 178,672
PHI NER NER 9 29,560 282,820

Table 1: Six different datasets were used in the benchmark evaluation. Three of these are NER tasks and
three are sequence classification tasks. This table lists the datasets alongside their size, the number and
classes, and the types of classification they target.

Model Parameters Paper

SweDeClin-BERT 125 M (Vakili et al., 2022)
SweClin-BERT 125 M (Lamproudis et al., 2021)

KB-BERT Base 125 M (Malmsten et al., 2020)
AI Nordics BERT Large 335 M N/A5

AI Sweden RoBERTa Large 355 M N/A6

AI Sweden BERT Large 369 M N/A7

KB-BERT Large 370 M N/A8

Multilingual E5 Large 560 M (Wang et al., 2024)
RemBERT 576 M (Chung et al., 2020)

Table 2: In this initial edition of the SweClinEval benchmark, nine different models were evaluated. All
models are encoder models, and they are listed here in order of parameter count. When available, the
paper that introduced the model is listed. SweDeClin-BERT and SweClin-BERT are the only models
created specifically for Swedish clinical NLP.

achieved by the domain-adapted models. This
indicates that, at least for these tasks, domain
adaptation results in better performance on clin-
ical NLP tasks. On the other hand, this finding
is not as clear when examining the NER tasks.
While the domain-adapted models perform com-
petitively, the best-performing model on all three
NER tasks is AI Sweden’s RoBERTa Large model.

Crucially, the models differ greatly in size. The
smaller models are around three times smaller
than the medium-sized models, and more than
four times smaller than the largest models. The
comparatively strong performance of the domain-
adapted models, which are both small, is more im-

5https://huggingface.co/AI-Nordics/
bert-large-swedish-cased

6https://huggingface.co/
AI-Sweden-Models/roberta-large-1160k

7https://huggingface.
co/AI-Sweden-Models/
bert-large-nordic-pile-1M-steps

8https://huggingface.co/KBLab/
megatron-bert-large-swedish-cased-165k

pressive when seen from this perspective. Domain
adaptation seems to allow smaller models to com-
pete with larger counterparts. Naturally, this leads
to the question of whether this finding holds true
for larger models, too. The two clinical models are
initialized from KB-BERT Base, and an interest-
ing direction for future work could be examining
if initializing from larger models produces analo-
gous results. The RoBERTa Large model from AI
Sweden would be an interesting candidate, given
its strong performance on the NER tasks. In any
case, the benefits from domain adaptation align
with many previous studies (Gu et al., 2021; Lam-
proudis et al., 2021).

Perhaps somewhat surprisingly, parameter
count itself does not seem to be a determining fac-
tor in what models are the strongest. This is not
only the case when comparing domain-adapted
and general-domain models. For example, KB-
BERT Base and KB-BERT Large were both trained
by the same organization, and are from the same
model family. The main difference between the
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Model Size ICD-10 Factuality ADE

Classification Classification Classification

SweDeClin-BERT S 0.832±0.011 0.735±0.018 0.203±0.022
SweClin-BERT S 0.836±0.014 0.731±0.021 0.196±0.014

KB-BERT Base S 0.801±0.015 0.671±0.017 0.185±0.012
AI Nordics BERT Large M 0.811±0.012 0.657±0.025 0.192±0.013
AI Sweden RoBERTa Large M 0.816±0.018 0.594±0.126 0.159±0.028
AI Sweden BERT Large M 0.816±0.012 0.654±0.032 0.167±0.057
KB-BERT Large M 0.801±0.013 0.683±0.019 0.190±0.011
Multilingual E5 Large L 0.824±0.013 0.525±0.074 0.192±0.015
RemBERT L 0.823±0.010 0.379±0.059 0.149±0.050

Model Size Factuality Clinical Entity PHI

NER NER NER

SweDeClin-BERT S 0.623±0.024 0.766±0.034 0.945±0.012
SweClin-BERT S 0.610±0.018 0.754±0.038 0.938±0.014

KB-BERT Base S 0.600±0.025 0.743±0.039 0.941±0.025
AI Nordics BERT Large M 0.612±0.026 0.721±0.039 0.948±0.010
AI Sweden RoBERTa Large M 0.641±0.011 0.779±0.036 0.965±0.009
AI Sweden BERT Large M 0.513±0.185 0.738±0.038 0.854±0.285
KB-BERT Large M 0.552±0.025 0.697±0.046 0.936±0.012
Multilingual E5 Large L 0.603±0.019 0.511±0.339 0.608±0.037
RemBERT L 0.417±0.026 0.600±0.075 0.947±0.011

Table 3: Nine encoder models were evaluated for sequence classification using six different clinical
tasks. Three of the tasks were sequence classification tasks, and three were token-level NER tasks. The
performance is summarized using F1 with standard deviations. The highest F1 of each task is bolded, and
the second highest is underlined. Models are ordered according to ascending parameter count as listed
in Table 2 and categorized as Small, Medium, or Large models.

Model Sequence NER

SweDeClin-BERT 2.86 ms 2.85 ms
SweClin-BERT 2.86 ms 2.84 ms

KB-BERT Base 2.88 ms 2.87 ms
AI Nordics BERT Large 5.60 ms 5.56 ms
AI Sweden RoBERTa Large 6.91 ms 6.05 ms
AI Sweden BERT Large 5.60 ms 5.56 ms
KB-BERT Large 8.76 ms 8.67 ms
Multilingual E5 Large 6.08 ms 6.03 ms
RemBERT 9.38 ms 9.36 ms

Table 4: The different models used in the bench-
mark use different architectures and are of differ-
ent sizes. This table lists the time of each model
for inference on one sample, both for sequence
classification and NER.

models is that the larger model consists of more
parameters and was trained using a much larger
corpus. Nevertheless, KB-BERT Base actually
outperforms its larger counterpart in some cases.

While the large standard deviations call for cau-
tious interpretations of the results, it is at least
clear the larger model is not outperforming its
smaller competitor.

On the other hand, parameter count clearly in-
fluences the inference speed of the models, as in-
dicated in Table 4. While this is not surprising, it
is worth mentioning. Other benchmarks, such as
the GLUE benchmark, do not always present this
information. However, inference speed can be im-
portant in practice, especially when differences in
performance are small. Smaller and faster mod-
els require less expensive hardware, which can be
important in cases where it is not possible to use
cloud providers to run the models. This is fre-
quently the case for clinical uses, due to the sensi-
tivity of clinical data.

6 Conclusions

In this paper, we present SweClinEval – the first
Swedish benchmark for clinical NLP. We evaluate
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a wide range of encoder-style LLMs for six differ-
ent Swedish clinical NLP tasks. This effort repre-
sents the first such evaluation to be conducted, and
forms a basis for future monitoring of the advances
in Swedish clinical NLP.

The results of this first evaluation indicate sev-
eral interesting trends. The benchmark results sug-
gest that domain adaptation is an effective strat-
egy for improving the performance of LLMs in the
clinical domain, at least for small LLMs. Future
research should examine whether this also holds
for larger models. Furthermore, the evaluations
also show that parameter count alone is not enough
to perform strongly in the tasks included in our
benchmark.

The aim of this paper is to enable monitoring of
the progress within Swedish clinical NLP. Due to
privacy constraints, the data cannot be shared. We
strongly encourage others interested in Swedish
clinical NLP to contact us for inclusion in the
benchmark. This pragmatic approach to bench-
marking enables us to monitor the progress that is
being made, which SweClinEval makes possible.

6.1 Limitations

A limitation of the current version of the bench-
mark is that it only supports encoder models. This
is unfortunate, as there is a strong trend towards
using autoregressive models both in fine-tuning
and few-shot settings. Future versions of the
benchmark would benefit from including versions
of the datasets that allow non-encoder models to
be evaluated. This is not trivial but, as demon-
strated by the ScandEval benchmark, it is possible
and is an aim for future iterations of the bench-
mark. Furthermore, we aim to extend the bench-
mark with more datasets for tasks such as summa-
rization and question-answering.

A more significant limitation of SweClinEval
is that currently, only parts of the data can be
shared. This restriction is due to privacy regula-
tions surrounding the inherently sensitive clinical
data from which the datasets were created. How-
ever, two of the datasets – the Stockholm EPR PHI
Corpus and the Stockholm EPR ICD-10 Corpus –
are available in automatically de-identified form
for academic users. As the regulatory environ-
ment around secondary use of private information
changes, it may be possible to share the data more
freely in the future. For now, our view is that Swe-
ClinEval is a pragmatic solution that allows the

Swedish NLP community to monitor the progress
in Swedish clinical NLP.
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Abstract
Automatic de-identification is a cost-effective and straightforward way of removing large amounts of personally identifiable
information from large and sensitive corpora. However, these systems also introduce errors into datasets due to their imperfect
precision. These corruptions of the data may negatively impact the utility of the de-identified dataset. This paper de-identifies
a very large clinical corpus in Swedish either by removing entire sentences containing sensitive data or by replacing sensitive
words with realistic surrogates. These two datasets are used to perform domain adaptation of a general Swedish BERT
model. The impact of the de-identification techniques is assessed by training and evaluating the models using six clinical
downstream tasks. The results are then compared to a similar BERT model domain-adapted using an unaltered version of the
clinical corpus. The results show that using an automatically de-identified corpus for domain adaptation does not negatively
impact downstream performance. We argue that automatic de-identification is an efficient way of reducing the privacy risks of
domain-adapted models and that the models created in this paper should be safe to distribute to other academic researchers.

Keywords: Privacy-preserving machine learning, pseudonymization, de-identification, Swedish clinical text, pre-trained
language models, BERT, downstream tasks, NER, multi-label classification, domain adaptation

1. Introduction
Natural Language Processing (NLP) research is cur-
rently dominated by so-called pre-trained language
models based on transformers (Vaswani et al., 2017),
which were popularized by the introduction of the
BERT model by Devlin et al. (2019). These language
models typically consist of millions – even billions –
of parameters that are learned from enormous corpora.
The success of pre-trained language models in general-
domain tasks has prompted research into whether these
models also succeed in medical-domain tasks.
Language models are taught to model language by
learning the statistical distributions of the words in their
training data. However, words often have different
meanings depending on in which domain they are used.
The word chest has a dual meaning in everyday lan-
guage – something used for storage or a region of the
body – but only one of these is relevant in a medical
context. A language model which has learned the word
chest from a general-domain corpus may have a repre-
sentation of the word that is sub-optimal in the medical
domain.
Indeed, many researchers have found that performance
on domain-specific tasks is helped by adapting exist-
ing language models or pre-training new models using
in-domain data (Lee et al., 2019; Beltagy et al., 2019;
Lamproudis et al., 2021; Lamproudis et al., 2022b;
Lamproudis et al., 2022a). Better performance means
that the models will be more useful in helping medical
professionals improve patient outcomes.
However, the scale of the data used to train these mod-
els means that researchers cannot know what sensitive
information the corpora contain. In the medical do-
main, we can be certain that the texts contain sensi-

tive information. This is cause for concern since pre-
trained language models are susceptible to privacy at-
tacks (Bender et al., 2021).
This paper examines one way of reducing the pri-
vacy risks: automatic de-identification. Two different
approaches are studied: pseudonymization (Sweeney,
1996; Dalianis, 2019) and removal of sensitive data.
Two different clinical BERT models are created by ap-
plying these techniques to the pre-training data. The
impact of automatic de-identification on the perfor-
mance of the models is then evaluated on downstream
tasks.

2. Related Research
The two main topics of this paper are automatic de-
identification and the privacy risks of large language
models. This section introduces these concepts by pro-
viding a brief summary of results related to the topic of
this paper.

2.1. Privacy Attacks on Language Models
Large pre-trained language models are susceptible to a
wide range of attacks on privacy. One reason for this is
due to their size, which gives them a tendency to unin-
tentionally memorize parts of their training data. The
attacks can generally be separated into two main cate-
gories:

Training data extraction An attacker that success-
fully mounts a model inversion attack is able to
extract details about the training data. One ex-
ample of a training data extraction attack was
mounted by Carlini et al. (2020). They managed
to extract entire passages from IRC logs from the
model GPT-2 (Radford et al., 2019).
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Membership inference If an attacker is able to dis-
cern whether or not a datapoint was part of the
training data, they have successfully mounted a
membership inference attack (Shokri et al., 2017).
Although these attacks are typically less severe
than training data extraction attacks, they can also
expose sensitive data.

To the best of our knowledge, there are no examples
of successful training data extraction attacks on BERT
models. Lehman et al. (2021) and Vakili and Dalia-
nis (2021) found that BERT models are at least less
susceptible to such attacks than GPT-2. Both stud-
ies attempted to extract training data from a BERT
model trained on a version of MIMIC-III (Johnson et
al., 2016) which had its masked entities populated with
realistic but fake values.
Nakamura et al. (2020) performed a related attack
that attempted to re-predict pseudonymized informa-
tion. They trained a BERT model on a version of the
MIMIC-III (with inserted surrogate values) and then re-
masked the surrogate entities in this dataset. They then
attempted to reconstruct the surrogate names but did
not succeed, concluding that this does not seem to be a
viable attack.
Lehman et al. (2021) also performed membership in-
ference attacks on their BERT model. Their results in-
dicated a small risk of memorizing patients’ names.
At the same time, they were not able to link a pa-
tient’s name to any of their conditions. Jagannatha et
al. (2021) also performed membership inference at-
tacks on BERT and found that there is a risk of privacy
leakage from BERT models. However, this risk is sig-
nificantly smaller than for models like GPT-2.

2.2. De-Identification of Clinical Text Data
The electronic health records (EHRs) used in clini-
cal NLP are inherently sensitive. For example, the
data used in this study was found to have an esti-
mated protected health information (PHI) density1 of
1.57% (Henriksson et al., 2017). However, the PHI
density varied considerably across medical specialties
and classes of clinical notes. For example, almost
20% of the sentences in discharge summaries contained
at least one PHI. The prevalence of PHI has caused
many researchers to explore ways of reducing the risks
to patient privacy that comes with using their health
data. One active area of research is automatic de-
identification.
Automatic de-identifiers typically rely on named entity
recognition (NER) models to detect sensitive data in
datasets. Thus, the recall of the model needs to be bal-
anced against its precision. In this context, the classic
precision-recall trade-off translates to one between util-
ity and privacy. Low recall means that a lot of sensitive
data will be undetected, but a low precision results in a
dataset where a lot of non-sensitive data is corrupted.

1PHI density was defined as the number of PHI mentions
divided by the number of tokens.

Berg et al. (2020) used various high recall models
to de-identify several Swedish clinical datasets. This
did not seem to lower the utility of the datasets, as
training with the datasets did not significantly decrease
downstream performance. The authors tried out four
strategies for the de-identification: pseudonymization
(replacing sensitive data with surrogates), masking the
sensitive data, replacing a sensitive word with its class
name (e.g., replacing ”John” with ”First Name”), and
removing the sensitive data along with the sentence
in which it appeared. All of the downstream tasks
were NER tasks and were approached using a ma-
chine learning algorithm based on conditional random
fields (CRFs). The tasks were clinical entity identi-
fication, adverse drug effect identification, and cervi-
cal cancer symptom detection. Pseudonymization re-
sulted in the smallest negative impact on the down-
stream tasks, while the sentence removal strategy re-
sulted in a greater deterioration of the performance.

Vakili and Dalianis (2022) automatically de-identified
three Swedish clinical datasets using pseudonymiza-
tion. Each dataset was associated with a task: two se-
quence classification tasks (ICD-10 classification and
factuality classification) and one NER task (clinical en-
tity recognition). Different BERT models were trained
using unaltered and pseudonymized data, and the per-
formances on all tasks were compared. There was no
significant difference in the performance of the mod-
els trained on unaltered data and the models trained on
pseudonymized data.

Obeid et al. (2019) de-identified clinical data and eval-
uated the impact of this by building detectors of altered
mental status (AMS) using a variety of machine learn-
ing models. These included Naı̈ve Bayes Classifiers,
Single Decision Trees, Random Forests, and Multilayer
Perceptrons. The deep learning models performed the
strongest, but no model showed any significant deterio-
ration in performance when trained using de-identified
text instead of the original text.

No automatic de-identification system has perfect re-
call, and some sensitive data will remain in a processed
corpus. However, pseudonymizing the data makes it
difficult to determine which data are real and which
data are pseudonymized. Carrell et al. (2019) ex-
plored the concept of hiding in plain sight (HIPS).
They were able to train a tagger to distinguish be-
tween pseudonymized data and data that were HIPS in
a pseudonymized dataset. The tagger performed sig-
nificantly better than random guessing but had a high
rate of false positives and false negatives. Thus, the au-
thors concluded that HIPS is still helpful for protecting
privacy.

This study applies two of the de-identification ap-
proaches outlined in Berg et al. (2021) to a clinical
corpus data. However, the data used in this paper is
much larger in scale and is used to pre-train language
models rather than to build task-specific classifiers.
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3. Data
The clinical data used to train and evaluate the BERT
models originate from the Karolinska University Hos-
pital. The data are stored in the research infrastructure
Health Bank – The Swedish Health Record Research
Bank2 (Dalianis et al., 2015) at DSV/Stockholm Uni-
versity.

3.1. EHRs from the Health Bank
The BERT models in this paper were pre-trained us-
ing a 17.9 GB subset of the Health Bank. The clinical
texts come from a large number of clinical units and
encompass over 2 million EHRs3. This dataset is com-
parable in size to the general domain Swedish corpus of
newspapers, Swedish Wikipedia, and government doc-
uments that was used to pre-train KB-BERT (Malmsten
et al., 2020).
These EHRs were de-identified according to the pro-
cess outlined in Section 4.1, and the resulting dataset
was used to train two BERT models, as will be de-
scribed in Section 4.2. Lamproudis et al. (2021)
also use this dataset in its unaltered form to train the
baseline model used for evaluating the impact of de-
identifying the pre-training data.

3.2. Datasets for Downstream Tasks
Five manually annotated datasets, all created from the
Health Bank, were used to evaluate the downstream
performance of the models. All of the downstream
tasks concern clinical NLP tasks and make it possible
to compare the BERT models to each other.

Stockholm EPR Gastro ICD-10 Corpus A Gastro
ICD-10 data set consisting of 6,062 gastro-related
discharge summaries and their assigned ICD-10
diagnosis codes. The data set encompasses 4,985
unique patients and 795,839 tokens. The data are
divided into 10 groups that correspond to different
body parts; the ICD-10 codes range from K00 to
K99. Each group contains several codes (Remmer
et al., 2021).

Stockholm EPR PHI Corpus A PHI data set of 4,480
annotated entities and 380,000 tokens. The PHIs
correspond to nine PHI classes: First Name, Last
Name, Age, Phone Number, Location, Health
Care Unit, Organization, Full Date, and Date Part
(Dalianis and Velupillai, 2010).

Stockholm EPR Clinical Entity Corpus A clinical
entity data set comprising 70,852 tokens and
7,946 annotated entities corresponding to four
clinical entity classes Diagnosis, Findings, Body
parts, and Drugs (Skeppstedt et al., 2014).

2Health Bank: http://dsv.su.se/healthbank
3This research has been approved by the Swedish Ethical

Review Authority under permission no. 2019-05679.

Stockholm EPR Diagnosis Factuality Corpus A
factuality diagnosis data set encompassing six
levels of annotations regarding the factuality of a
diagnosis. The data set consists of 3,710 samples
with 7,066 annotated entities Certainly Positive,
Probably Positive, Possibly Positive, Possibly
Negative, Probably Negative, and Certainly Neg-
ative encompassing 240,000 tokens (Velupillai et
al., 2011; Velupillai, 2011). The dataset is used
for two tasks. One is a NER task where the goal
is to identify tokens specifying diagnoses and
assigning them a factuality label. The second
task treats the sample as a single datapoint and
performs a multi-label classification of the entire
sample to predict its factuality.

Stockholm EPR ADE ICD-10 Corpus A newly in-
troduced ADE corpus containing 16,858 samples
encompassing 634,000 tokens. The samples are
distributed over 12 different ICD-10 codes de-
scribing adverse drug events. The task is treated as
a binary classification task where positive samples
have been assigned a specific ICD-10 code that
denotes an adverse drug event. Negative samples
in each group have been assigned a code describ-
ing a similar condition that was not drug-induced.
The goal of the task is to determine whether or
not the condition defined by the ICD-10 code was
induced by an ADE.

4. Experiments
The study encompasses three steps. First, the Health
Bank corpus is processed to detect and deal with sensi-
tive data. This leads to two different clinical corpora
that are then used for domain-adaptive pre-training.
The resulting models are evaluated on downstream
tasks, and the results are compared to other models
trained on the Health Bank data. This section gives a
detailed account of the experiments and their results.

4.1. De-Identifying the Health Bank
A NER model was built based on a clinical BERT
model trained by Lamproudis et al. (2021) using the
Stockholm EPR PHI Corpus. The model was used to
detect the nine PHI classes described in Section 3.2
and by Dalianis and Velupillai (2010). This model was
then applied to the 17.9 GBs of EHRs extracted from
the Health Bank. This processing uncovered a large
amount of possibly sensitive data. The number of de-
tected instances for each PHI type is listed in Table 1.
Two approaches to de-identification were taken, as il-
lustrated in Figure 1. In the first approach, which we
refer to as pseudonymization, each detected entity was
replaced by a realistic surrogate value of the same class.
For example, a detected name will be replaced with an-
other (generated but realistic) name. Pseudonymization
preserves the semantics of the text as long as the entity
has been correctly classified and allows the model to
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PHI Type # Predicted Instances NER Recall NER Precision

Health Care Unit 19,659,127 80% 87%
Partial Date 19,374,711 83% 94%
Last Name 14,332,309 97% 96%
First Name 12,525,688 97% 98%
Full Date 10,459,935 55% 77%
Location 3,158,031 89% 85%
Age 2,064,111 35% 47%
Organisation 1,078,115 36% 71%
Phone Number 1,262,313 40% 63%

Table 1: The PHI types in order of frequency as classified by the de-identification system. The per-class recall and
precision for the NER model are also displayed and were calculated on the test data from Dalianis and Velupillai
(2010). In total, 83,914,340 sensitive entities are found in 49,715,558 sentences.

Figure 1: This hypothetical example illustrates the two approaches taken to de-identify the data. One approach
replaces the sensitive data with realistic surrogates and is used to train the model KB-BERT + Pseudo. The other
approach instead removes the entire sentence from the dataset and this filtered dataset is used to train the model
KB-BERT + Filtered.

learn essentially the same information without expos-
ing any sensitive information.
The second and more aggressive approach is to remove
all sentences that contain sensitive entities. This ap-
proach removes 49,715,558 out of 364,385,114 sen-
tences in the original dataset. In other words, 13.65%
of all sentences were identified as containing sensitive
entities. The removal of these sentences reduced the
size of the dataset by approximately 19%.
Combined with the total number of entities shown in
Table 1, these statistics indicate a slight tendency for
sensitive entities to cluster in the same sentences, with
around 1.69 entities per sensitive sentence. If this ten-
dency holds for the entire dataset, then removing entire
sentences should help remove some additional sensitive
entities that the de-identifier has missed.

4.2. Training the BERT Models
The models in this paper are trained using a setup sim-
ilar to Lamproudis et al. (2021), whose model is used
for comparison in this study. Their model was trained
using unaltered sensitive EHR data and is referred to as
KB-BERT + Real in this paper. The two new models
are built using the datasets described in Section 4.1:

KB-BERT + Pseudo The data used to train this model
has had all sensitive entities (as listed in Table 1)
replaced with realistic surrogates of the same en-
tity class.

KB-BERT + Filtered This model is built using the
dataset where all sentences found to contain sensi-
tive data have been removed. This filtered version
of the dataset is 19% smaller than the version used
to train KB-BERT + Pseudo.

Both models were trained using KB-BERT (Malmsten
et al., 2020) as the starting point and are the same size
as BERTBASE (Devlin et al., 2019). As in Lamproudis
et al. (2021), the vocabularies of both models are iden-
tical to that of KB-BERT. Pre-training was resumed
for three epochs of the datasets using hyperparameters
shown in Table 2.
One way in which the training of these two models dif-
fers from KB-BERT + Real is that our training data
does not contain any document boundaries. This means
that some datapoints in the training data contain two
sentences from different clinical notes. In theory, this
can harm the training process. As will be shown in
Section 4.3, it does not seem to matter very much in
practice.

4.3. Evaluating on Downstream Tasks
After training each model for three epochs, the result-
ing models were fine-tuned and evaluated on each of
the six downstream tasks described in Section 3.2.
Table 3 displays the results of the downstream evalu-
ation. Each model, except for KB-BERT, is evaluated
on all three epochs, and we report the best result of
the three evaluations. The best result is selected as the
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Hyperparameter Value

Max epochs 3
Batch size 256
Training sequence length 512
Mask probability 15%
Optimizer Adam
Learning decay rate Linear
Learning rate 1e-4
Dropout 0.1
Warm-up steps 10,000

Table 2: The hyperparameters used for continuing the
pre-training with KB-BERT as a starting point. These
hyper-parameters were used to train KB-BERT + Real
(Lamproudis et al., 2021), KB-BERT + Filtered, and
KB-BERT + Pseudo.

aim of this study is not to determine the optimal num-
ber of epochs which could vary depending on the de-
identification approach.
All three models outperform the non-clinical baseline
KB-BERT on every clinical downstream task. This is
expected and indicates that the models have adapted
to the language of the domain. More surprisingly, de-
identification does not lead to any discernible drop in
performance. In fact, KB-BERT + Pseudo even outper-
forms KB-BERT + Real on some tasks.

5. Discussion & Conclusions
The results in Section 3.2 show that performance on
downstream tasks is not harmed by de-identifying the
data used for domain adaptation of language models.
This section contextualizes these findings and provides
suggestions for future research.

5.1. Absence of Performance Drops
Automatic de-identification leads to a certain degree of
corruption of the training data. The models used in
this paper have a strong level of precision for many en-
tity classes, as shown in Table 1. On the other hand,
the evaluation indicates that around 15% of all de-
tected locations are actually something else. The de-
identification system will then either erroneously re-
place the word with a location name – corrupting the
data – or unnecessarily discard the sentence.
Surprisingly, Table 3 indicates that this does not ad-
versely affect the usefulness of the resulting models on
the downstream tasks. KB-BERT + Pseudo is trained
on data that is possibly corrupted due to precision is-
sues but still performs similarly to KB-BERT + Real.
KB-BERT + Filtered also performs comparably to
KB-BERT + Real even though the data is reduced to
a non-trivial degree. It does, however, perform notice-
ably worse on the PHI NER task. This is expected since
the de-identification approach aims to remove all such
entities from the continued pre-training.

5.2. Reliability of the De-Identification
The NER model used in this paper is evaluated on in-
domain clinical NER data. This strongly suggests that
the recall and precision estimates are accurate. Never-
theless, the efficacy of the de-identification can only be
assessed using the testing data. Due to the very nature
of the problem, this means that the amount of sensitive
information remaining in the training data can only be
estimated.
However, not all entity classes are equally sensitive.
Table 3 shows that our system detects and de-identifies
97% of all first and last names which are arguably the
most sensitive classes. Furthermore, an attacker can-
not target a specific person as they do not know if their
names are among the 3% retained in the dataset.

5.3. Releasing the Models?
As explained in Section 2.1, there has been a grow-
ing interest in evaluating how susceptible pre-trained
language models are to privacy attacks. While GPT-2
has been found to be very susceptible to attacks, BERT
seems to be more resilient.
The performance of the de-identification system sug-
gests that the overwhelming majority of sensitive data
are removed from the training data of our models. If
only 3% of all names in the data used for domain adap-
tation are sensitive, and the risk of exposing any name
is less than 10% (Jagannatha et al., 2021), then the risk
of exposing a real name is very small.
Another feature of the approach taken in this paper is
that the models use a pre-trained model as their start-
ing point. This means that any memorized names can
come both from the Health Bank or the data used to
train KB-BERT . This can be viewed as a form of hid-
ing in plain sight (HIPS). Thus, an attacker who has
extracted a name not only needs to determine whether
or not it is a surrogate but also whether it came from a
sensitive or non-sensitive data source.
BERT models have been shown to be quite resis-
tant to training data extraction attacks (Nakamura et
al., 2020; Lehman et al., 2021; Vakili and Dalianis,
2021). Furthermore, the limited susceptibility to mem-
bership inference attacks (Lehman et al., 2021; Jagan-
natha et al., 2021) is likely negligible when most of
the data memorized by the model has been made non-
sensitive through de-identification. Based on this, as
well as other points made in this paper, we believe
that the models can safely be shared among academic
researchers. The model KB-BERT + Pseudo will be
distributed under the name SweDeClin-BERT4 once
we have obtained the necessary permissions from the
Swedish Ethical Review Authority.

5.4. Future Research
As noted in Section 2.2, previous research has shown
that training on pseudonymized data can adversely im-
pact model performance. In this paper, we show that

4This is short for Swedish De-identified Clinical BERT.
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Model
ICD-10

Classification

PHI

NER

Clinical Entity

NER

Factuality

Classification

Factuality

NER

ADE

Classification

KB-BERT 0.799 0.91 0.803 0.635 0.630 0.183
KB-BERT + Real 0.833 0.941 0.858 0.732 0.682 0.199
KB-BERT + Filtered 0.833 0.929 0.854 0.731 0.672 0.199
KB-BERT + Pseudo 0.832 0.941 0.861 0.736 0.684 0.191

Table 3: The table compares the downstream performances of each BERT model. KB-BERT and KB-BERT + Real
are used as baselines. KB-BERT is also the starting point for the continued pre-training of all three models, as
described in Section 4.2. All values are F1-scores and the best results are bolded.

this does not seem to be a problem when pre-training
for domain adaptation. However, the data used for the
downstream tasks is unaltered sensitive data, and fur-
ther research into the impacts of pseudonymization on
task-specific training data is needed.
It could also be interesting to perform a similar exper-
iment on English data. A natural candidate would be
to use the freely available and anonymized MIMIC-III
dataset (Johnson et al., 2016), though this would re-
quire replacing all the masked PHIs with realistic sur-
rogates. This has been done by Lehman et al. (2021).
On the other hand, using a non-anonymized dataset –
as done in this paper – helps ensure that the results are
realistic and not contingent on the quality of the surro-
gate selection.
Another way to avoid leaking private information is to
use synthetic data. This can be generated using genera-
tive models. Generative models such as GANs5 (Good-
fellow et al., 2014) have successfully been applied to
generate very realistic image data, targeting many dif-
ferent domains (Jetchev and Bergmann, 2017; Han et
al., 2018; Brock et al., 2018).
Choi et al. (2017; Guan et al. (2018) use GANs to gen-
erate EHR data, and a more recent paper by Al Aziz et
al. (2021) use generative transformer-based models to
generate synthetic EHRs. None of these papers use the
synthetic data to pre-train a new language model. Per-
formance limitations are likely a barrier to generating a
dataset of the scale needed for domain adaptation of a
pre-trained language model.

5.5. Conclusions
This paper compares the impact of automatically de-
identifying a large corpus which is used to domain-
adapt Swedish BERT models. The consequences for
the utility of the de-identified corpus are determined by
comparing the downstream performance of the result-
ing BERT models with a model domain-adapted using
an unaltered version of the corpus.
The results from six clinical downstream tasks show
that there is no negative impact from using an automat-
ically de-identified clinical corpus. Indeed, the results
show a slight increase in performance for some tasks.
We suggest that practitioners who use clinical data

5GAN stands for Generative Adversarial Network.

for domain adaptation incorporate automatic de-
identification into their workflow to decrease the risk
of privacy leaks. Automatic de-identification is an eas-
ily implemented measure that reduces the risks of un-
intentionally memorizing sensitive information without
harming utility.
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Abstract 

Many state-of-the-art results in natural language processing (NLP) rely on large pre-trained language models (PLMs). 
These models consist of large amounts of parameters that are tuned using vast amounts of training data. These fac-
tors cause the models to memorize parts of their training data, making them vulnerable to various privacy attacks. 
This is cause for concern, especially when these models are applied in the clinical domain, where data are very 
sensitive. 

Training data pseudonymization is a privacy-preserving technique that aims to mitigate these problems. This tech-
nique automatically identifies and replaces sensitive entities with realistic but non-sensitive surrogates. Pseudonymi-
zation has yielded promising results in previous studies. However, no previous study has applied pseudonymization 
to both the pre-training data of PLMs and the fine-tuning data used to solve clinical NLP tasks. 

This study evaluates the effects on the predictive performance of end-to-end pseudonymization of Swedish clinical 
BERT models fine-tuned for five clinical NLP tasks. A large number of statistical tests are performed, revealing minimal 
harm to performance when using pseudonymized fine-tuning data. The results also find no deterioration from end-
to-end pseudonymization of pre-training and fine-tuning data. These results demonstrate that pseudonymizing train-
ing data to reduce privacy risks can be done without harming data utility for training PLMs.

Keywords Natural language processing, Language models, BERT, Electronic health records, Clinical text, 
De-identification, Pseudonymization, Privacy preservation, Swedish

Introduction
The popularization of the transformer architecture [1] 
in the past few years has led to rapid advances in natural 
language processing (NLP). Many benchmarks are now 
dominated by pre-trained language models (PLMs) that 
learn to model language using unlabeled corpora. There 
are many PLM architectures, and this article focuses 
on the BERT architecture [2], which is widely used and 

competitive in many NLP benchmarks. PLMs typically 
consist of hundreds of millions, even billions, of param-
eters which are trained on enormous amounts of unla-
beled training data. The sizes of the corpora used to 
pre-train these models are typically in the range of tens 
of gigabytes or even terabytes of data. The BERT models 
used in this study consist of over 100 million parameters 
and are pre-trained on around 6 billion tokens [2, 3]. On 
the other end of the scale, the largest publicly available 
version of Llama 2 consists of 70 billion parameters tuned 
using a corpus spanning 2 trillion tokens [4].

PLMs have shown great promise in several NLP 
domains, and the clinical domain is no exception. State-
of-the-art results in clinical NLP tend to rely on PLMs, 
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e.g., for temporal relation extraction [5], text similarity 
[6], concept normalization [7], adverse drug event extrac-
tion [8], medication event extraction [9] and informa-
tion extraction [10]. However, while PLMs are generally 
pre-trained using readily available corpora in the general 
domain – e.g., Wikipedia and other data sources on the 
Internet – research suggests that using generic PLMs in 
highly specialized domains such as healthcare may be 
suboptimal due to significant domain differences [11, 
12], even in the presence of large language models like 
T5-XL and GPT-3 [13]. This has motivated efforts to 
develop domain-specific clinical PLMs. There are dif-
ferent approaches to developing domain-specific PLMs 
[14], including pre-training a new language model from 
scratch with in-domain data, e.g., in the form of clinical 
text from electronic health records (EHRs). An alterna-
tive approach is to adapt an existing, generic PLM to 
the target domain by continuing to pre-train it with 
in-domain data. The vocabulary of the model can be 
retained or adapted to account for domain differences. 
This continued pre-training is known as domain-adap-
tive pre-training [15–17].

While PLMs have shown great promise in solving 
important NLP problems, their reliance on increasingly 
large numbers of parameters and vast corpora causes 
models to memorize parts of their training data [18–20]. 
This tendency is undesirable in many use cases but also 
has important implications for privacy. When models are 
domain-adapted using clinical data, these privacy risks 
must be mitigated. Clinical data often describes sensitive 
information that must be protected, not just for ethical 
reasons but also due to current regulations.

One way to reduce the privacy risks of using clinical 
data is to remove sensitive information. An important 
technique for doing so is called pseudonymization, which 
involves locating sensitive passages using named entity 
recognition (NER) and substituting them with realistic 
surrogate data. This technique has been applied to data 
for pre-training language models [21, 22] and for fine-
tuning models [20, 23], with successful results. However, 
previous research has only studied these two training 
steps in isolation.

In this paper, we demonstrate the first example of 
a clinical language model that has been fully pseu-
donymized in both the domain-adaptive pre-training and 
fine-tuning steps. This is done by:

• Pseudonymizing datasets for five clinical down-
stream tasks.

• Fine-tuning and evaluating a total of 300 models 
through 10-fold cross-validation of 30 different com-
binations of pseudonymized data and models.

• Comparing all models in terms of  F1 to determine if 
any statistically significant differences in predictive 
performance exist.

The results show that end-to-end pseudonymization 
can be successfully applied to the pre-training and fine-
tuning of language models. We find that end-to-end 
pseudonymization preserves privacy and simultaneously 
retains the utility of the data for domain-adaptive pre-
training and fine-tuning of PLMs.

Background
This study focuses on mitigating the privacy issues of 
modern transformer models in NLP using pseudonymi-
zation. This section gives a more detailed motivation for 
how these models are vulnerable to privacy attacks and 
why pseudonymization is a good privacy-preserving 
technique. Other privacy-preserving techniques are dis-
cussed, and previous works on pseudonymization are 
presented to provide the context in which this study is 
situated.

Privacy attacks
As mentioned in the introduction, large language mod-
els can be susceptible to privacy attacks. This suscepti-
bility is partially due to the self-supervised pre-training 
objectives that tend to involve reconstructing a noisy or 
obscured version of the training data. For example, BERT 
models are pre-trained using masked language modeling 
[2], which involves reconstructing a version of the train-
ing data in which some tokens have been replaced with 
[MASK] tokens. The pre-training is then performed 
using large text corpora with unknown quantities of sen-
sitive information, and the learned features are encoded 
in millions or billions of parameters.

Privacy attacks targeting PLMs aim to extract infor-
mation about their training corpora. The attacks do so 
by targeting the information encoded in the parameters 
of the models. Depending on the objective, these attacks 
can be categorized into two main classes. Training data 
extraction attacks aim to reconstruct data used to train 
a model. This is a severe form of attack since it can result 
in the disclosure of sensitive information about persons 
described in the training data of a model. In the clini-
cal domain, this could mean exposing the details of a 
patient’s medical history. Training data extraction attacks 
require an effective algorithm for sampling information 
from a model; however, such algorithms are not (yet) 
described for all models [24–27]. Nevertheless, there are 
examples of successful training data extraction attacks 
targeting generative systems such as GPT-2 and Chat-
GPT [19, 28].
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Membership inference attacks aim to discern whether or 
not a particular datapoint has been used to train a target 
model [29]. In a clinical context, this information could 
reveal if a patient associated with an EHR has visited a set 
of clinical units associated with particular health prob-
lems. This category of attacks typically involves meas-
uring the reaction of a model to a set of datapoints and 
using this information to distinguish between members 
and non-members of the training data [30, 31]. Success-
ful membership inference attacks may pose a privacy 
threat in themselves, but are also often used as a building 
block in training data extraction attacks when determin-
ing whether the algorithm has extracted a real or spuri-
ous datapoint.

Privacy‑preserving techniques
Several privacy-preserving techniques have been devel-
oped to mitigate the privacy threats described in the 
previous section. In this section, a non-exhaustive list of 
techniques will be described to provide context for why 
this study focuses on the pseudonymization of training 
data. Other promising and oft-mentioned techniques 
include differential privacy, homomorphic encryption, 
and synthetic training data.

Differential privacy is a notion of privacy that was 
originally designed for database records. The idea is 
that, given a datapoint d and two datasets D and D′ dif-
fering only in that d ∈ D while d /∈ D′ , the output of any 
aggregation of these datasets should be close to indistin-
guishable [32]. As it is typically formulated, we have (ǫ, δ)
-differential privacy [33] for an aggregation M with range 
R if

Differential privacy has also been adapted for deep 
learning. The DP-SGD algorithm [34] is a differentially 
private version of the stochastic gradient descent algo-
rithm commonly used to train neural networks. While 
differentially private learning has the advantage of hav-
ing a formal mathematical definition, the ǫ and δ param-
eters can be difficult to choose and interpret. This issue is 
compounded by the fact that effective differential privacy 
typically works by adding noise to the aggregation (e.g., 
the training algorithm), which may hinder efficient train-
ing [35]. Furthermore, differential privacy was originally 
designed for database records, and some have argued 
that it is ill-suited to the unstructured nature of natural 
language [36].

In contrast to differential privacy, homomorphic 
encryption aims to protect the result of an input X and its 
output M(X | D) rather than D (e.g., the data used to train 
a machine learning model M) itself. This is achieved by 
implementing M using operations that handle encrypted 

P[M(D) ∈ R] ≤ eǫP[M(D′) ∈ R] + δ.

data, meaning that both X and M(X | D) are knowable 
only to the person using the model [29]. Homomorphic 
encryption allows users to use a model owned by another 
party safely. The technique enables private inferences that 
do not disclose any information about the data to the 
owner of the model nor to any potential eavesdropper. 
However, it does not protect the owner of the model from 
attacks such as membership inference attacks or training 
data extraction attacks since the output of the inference 
is made available to the user initiating the inference.

With the growing availability of models capable of 
high-quality natural language generation, some have con-
sidered creating synthetic training data. This data, being 
synthetic, is assumed to be non-sensitive. By synthesiz-
ing data, the use of sensitive clinical data can be reduced 
[37] or done away with entirely [38, 39]. Synthetic data 
has been used in several studies to train well-performing 
fine-tuned clinical NLP models while limiting the risk 
of exposing private information from the original data 
[37–39]. There are fewer examples of models pre-trained 
using synthetic data. This is likely due to, at least in part, 
the computational costs of operating the large language 
models required to produce enough high-quality syn-
thetic text. However, the example of GatorTronS [40] 
shows that this approach is indeed possible and that 
models pre-trained on synthetic text can perform well. 
On the other hand, the extent to which a synthetic text 
itself may contain sensitive data is poorly understood. 
The risk that the synthesizing language model acciden-
tally generates parts of its own training data cannot be 
ruled out.

Automatic de‑identification and pseudonymization
Many of the aforementioned privacy-preserving tech-
niques are not specific to natural language data. Differ-
ential privacy, for example, was originally designed for 
database-style structured data where each row is to be 
protected. Unstructured natural language data stands out 
as a particularly high-dimensional data form. In contrast 
to structured database rows, it can be difficult to exhaus-
tively specify all of the information contained in an EHR. 
On the other hand, another feature of textual data is 
that many words or phrases can be replaced with similar 
information without changing the overarching meaning 
of a text. Examples of this phenomenon are synonyms 
which, broadly speaking, are interchangeable words that 
have the same meaning.

Automatic de-identification typically relies on NER 
to remove sensitive entities, such as data constituting 
personally identifiable information (PII). These entities 
usually cover direct identifiers such as names, but also 
cover quasi-identifiers such as locations, ages, and dates. 
Quasi-identifiers are PII that do not directly identify a 
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person, but that may do so when combined with other 
quasi-identifiers or with auxiliary information. A com-
monly used set of PII is the collection of entities desig-
nated as personal health information (PHI) by the HIPAA 
regulation [41] in the United States. Examples of PII, PHI, 
and how they relate to different types of identifiers can be 
found in Fig.  1. In this article, we use the broader term 
PII. However, the set of PII covered by the de-identifiers 
is based on the PHI described by the HIPAA regulation 
[42].

De-identification is typically done in two main steps. 
First, the NER model of the de-identifier is used to detect 
entities that are PII. Next, these are sanitized in some 
way. Examples of sanitization techniques include replac-
ing entities with their class name, masking them with a 
nondescript placeholder, and replacing them with sur-
rogate values. This study focuses on the last strategy—
pseudonymization—which replaces sensitive entities 
with realistic replacement values of the same entity type. 
These should preferably be chosen cleverly to preserve as 

much semantic information as possible without harming 
privacy. An example of how this process can work is illus-
trated in Fig. 2.

The goal of pseudonymization is to remove the PII 
most likely to be used to re-identify individuals. How-
ever, it is important to recognize that pseudonymizers are 
never perfect. The NER models that power them often 
have imperfect recall and precision. Imperfect recall is a 
privacy issue since low recall implies that the model will 
miss sensitive entities that should be sanitized. On the 
other hand, low precision will result in many non-sensi-
tive entities being replaced with inappropriate values. In 
the worst case, poor precision can lead to task-relevant 
words being replaced with irrelevant information, cor-
rupting the datapoint and potentially having a negative 
impact on data utility. Both the low-recall and low-preci-
sion scenarios are illustrated in Fig. 3.

Pseudonymization is related to but different from 
anonymization. Although the terms are sometimes 
used interchangeably in the literature, anonymization 

Fig. 1 The HIPAA regulation in the United States lists 18 types of PII, called Protected Health Information (PHI), that should be removed for privacy 
reasons. These cover most of the PII types that are typically considered to be direct identifiers. However, as the figure illustrates, there are many 
quasi-identifiers that are not covered by this PHI definition

Fig. 2 The pseudonymizers used in this study replace detected sensitive entities with realistic surrogates. The figure illustrates some of the entities 
considered by the system. The surrogate values are selected to preserve as much information as possible. However, an adversary with knowledge 
of Swedish geography would realize that, in this example, Kluk is an unlikely place to go skiing
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is typically associated with stronger privacy guarantees. 
For example, when the term is used in the GDPR1 it is 
often understood as implying complete and irreversible 
removal of any information that can be used to partially 
or fully identify an individual [44]. Pseudonymization, 
as understood in this study, does not fulfill this stricter 
requirement. Rather, it is a process that enhances the pri-
vacy of data.

In contrast to other techniques within the field of pri-
vacy-preserving machine learning, pseudonymization is a 
text-specific technique for privacy preservation that har-
nesses the particular characteristics of natural language. 
When successfully applied, pseudonymization preserves 
the overall semantics of a datapoint while removing sen-
sitive information. This scenario increases the privacy of 
a dataset while preserving its utility. However, when pre-
cision is not high enough, erroneous classifications and 
subsequent replacements will lead to a corruption of the 
data. The aim of this study is to demonstrate that, with a 
reasonably strong NER model, this does not happen often 
enough to harm the utility of the data for pre-training or 
fine-tuning clinical BERT models.

Utility for machine learning using sanitized text
An early study on using pseudonymized EHRs is 
described by Yeniterzi et  al. [45]. The authors trained 
NER models for detecting PII using both the pseu-
donymized and the original data. They found that the 
results deteriorated significantly when training on pseu-
donymized data and evaluating on unaltered text, with 
the  F1 score falling from 0.862 to 0.728.

Lothritz et al. [23] study the impact of de-identification 
on a wide range of general-domain datasets. They employ 
a variety of sanitization strategies, including two pseu-
donymization strategies of different sophistication. They 
evaluate these strategies using ERNIE [46] and BERT 
models on eight different downstream tasks. Their results 
show that de-identification harms the utility of their 

datasets, but that this harm was small. The results also 
show that pseudonymization yields the strongest perfor-
mance among the considered sanitization strategies.

Another study using sanitized text for machine learn-
ing is described by Berg et  al. [47]. The authors pseu-
donymized Swedish clinical texts and then used them to 
train two different machine learning algorithms to detect 
PII. These algorithms were then evaluated on real Swed-
ish clinical text data. The study aimed to enable sanitized 
training data to be transferred between hospitals for per-
forming de-identification tasks. The authors tried two 
machine learning algorithms: conditional random fields 
(CRF) and long short-term memory (LSTM) networks. 
CRF gave the best results on training on sanitized text 
and de-identifying real clinical text; however, the per-
formance on identifying several PII classes deteriorated, 
with the overall recall decreasing from 85% to 50%. This 
effect was primarily observed for the PII classes Location, 
Health Care Units and Full Date.

Berg et al. conducted another study [48] using four dif-
ferent strategies to sanitize the training data for down-
stream tasks, where models with different levels of recall 
were used to sanitize a set of Swedish datasets for clinical 
NER. Using a model with high recall is a good strategy in 
terms of privacy since it will identify more sensitive enti-
ties. However, these benefits may come at the expense of 
lower precision and more false positives. The study eval-
uated four different strategies for sanitizing the datasets: 
pseudonymization, masking the sensitive entities, replac-
ing them with their class name, and removing the entire 
sentences in which sensitive entities were detected. The 
impact of sanitizing the data was evaluated by training 
CRF models for three clinical NER tasks using different 
sanitized datasets. Overall, the pseudonymization strat-
egy had the smallest negative impact on the downstream 
tasks, while the sentence removal strategy resulted in a 
larger performance deterioration.

The overlap between PII and clinical entities is a 
source of potential harm to utility and has been thor-
oughly investigated by Berg et al. [48]. It was found that 
only one percent of clinical entities were affected by the 

Fig. 3 The NER models that power pseudonymizers are never perfect. When recall is insufficient, they will miss names such as Lundvall, which 
will remain exposed in the text. When there are problems with precision, non-sensitive words will be changed to irrelevant replacement values. In 
the worst case, a clinically relevant term like fracture may be replaced with a surrogate PII entity that harms data utility

1 The GDPR is the General Data Protection Regulation of that is applied 
throughout the European Union [43].
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de-identification process. The worst affected PII classes 
were Health Care Unit and Person (first and last name), 
which tended to overlap with the clinical entities drug, 
body part, disorder and finding. A later study [49] indi-
cated that the risk of misclassifying eponyms (e.g., dis-
eases like Alzheimer disease that are named after medical 
doctors) is lower when using BERT-based PII classifiers 
compared to earlier approaches. However, clinical enti-
ties are diverse, and there are other cases where misclas-
sifications could be an issue.

Vakili et  al. [22] evaluated the impact of pre-training 
BERT models using de-identified and unaltered data. 
Two sanitizing strategies were used: pseudonymization 
and sentence removal. Two models were adapted to the 
clinical domain by pre-training using clinical data sani-
tized with each strategy. The resulting models were then 
evaluated on six downstream tasks. The results showed 
no negative impact from pre-training using de-identified 
data compared to using unaltered data. Similarly, Vakili 
& Dalianis [20] evaluated the impact of fine-tuning a 
clinical BERT model using pseudonymized or unaltered 
datasets. They evaluated their approach using three 
downstream tasks, again finding no significant differ-
ence between training on unaltered or pseudonymized 
data. This study further builds upon the previous stud-
ies and provides deeper examinations of the interactions 
between pseudonymization and data utility. Further-
more, we demonstrate that pseudonymization can be 
applied both to the pre-training and fine-tuning data 
without harming the performance on clinical NLP tasks.

Methods and materials
This study relies on a large number of datasets and mod-
els, mainly created using data from the Swedish Health 
Record Research Bank (Health Bank)2. The original data 
were collected from the Karolinska University Hospital 
[50] and consist of a large number of Swedish EHRs3. 
This section describes the data and models used in the 
experiments, and how these experiments were carried 
out.

Clinical BERT models
This study examines the impact of pseudonymization 
applied to data for domain-adaptive pre-training and 
fine-tuning BERT models. As illustrated in Fig. 4, two dif-
ferent PLMs are used. One—SweDeClin-BERT—that has 
been trained using pseudonymized pre-training data [22], 
and another model—SweClin-BERT—that was trained on 
the unaltered version of the same dataset [51]. Both mod-
els were initialized using weights from the Swedish gen-
eral-domain KB-BERT model [52] and were adapted to 
the clinical domain by pre-training for three epochs over 
the Health Bank corpus. Figure B1 in Appendix B con-
tains a diagram showing how the models relate to other 
parts of the Health Bank.

The Health Bank corpus used for domain-adaptive 
pre-training consists of approximately 2.8 billion words 

Fig. 4 This study uses two different clinical BERT models created in earlier studies. SweClin-BERT is trained on a sensitive version of the Health 
Bank corpus [51], whereas SweDeClin-BERT is trained on a version that has been automatically pseudonymized [22]. Both models are initialized 
with the weights of KB-BERT [52]

2 http:// www. dsv. su. se/ healt hbank
3 This research has been approved by the Swedish Ethical Review Authority 
under permission no. 2019-05679.
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which is comparable to the 3.3 billion words used to train 
KB-BERT [3]. We did not pre-train for more than three 
epochs for reasons of resource efficiency. This is justi-
fied by prior work using the same data [53] showing that 
longer pre-training was unnecessary when starting from 
a general-domain model.

Five clinical downstream tasks
The utility of the models and datasets after and before 
pseudonymization was assessed using five clinical NLP 
tasks. The five tasks are based on corpora from the Health 
Bank infrastructure and are summarized4 in Table 1 and 
described in this section. The utility of each pseudonymi-
zation configuration was examined by measuring the 
performance of models fine-tuned on these tasks. Below 
is a list of the datasets as well as the abbreviated names 
used in Table 1 and other tables in the paper.

Stockholm EPR Gastro ICD‑10 Corpus I (ICD‑10)
The Gastro ICD-10 dataset consists of gastro-related dis-
charge summaries and their assigned ICD-10 diagnosis 
codes. The discharge summaries relate to 4,985 unique 
patients. The ICD-10 codes are divided into 10 groups 
corresponding to different body parts; the ICD-10 codes 
range from K00 to K99. Each group contains several 
codes [55].

Stockholm EPR Clinical Entity Corpus (Clinical NER)
A clinical entity dataset encompassing 157,123 tokens 
and 20,675 annotated entities assigned to four clinical 
entity classes Diagnosis, Findings, Body parts, and Drugs 
[56]. The goal of the task is to identify and correctly label 
the clinical entities.

Stockholm EPR Diagnosis Factuality Corpus (Factuality NER)
A factuality diagnosis dataset specifying six levels of 
confidence regarding the factuality of a diagnosis. The 
dataset encompasses 6,865 annotated entities5 labeled 
as Certainly Positive, Probably Positive, Possibly Positive, 
Possibly Negative, Probably Negative, or Certainly Nega-
tive [57, 58]. The task consists of identifying tokens in the 
corpus specifying diagnoses and assigning them a factu-
ality label.

Stockholm EPR Diagnosis Factuality Corpus (Factuality)
A dataset which is a variation of the Stockholm EPR Diag-
nosis Factuality NER Corpus that instead assigns a factu-
ality level to the entire document. The classification task 
is a multi-label classification problem where the model 
needs to predict the factuality of each document. The 
labels are the same as in the NER version of the task.

Stockholm EPR ADE ICD‑10 Corpus (ADE)
The ADE corpus contains 21,725 discharge summaries 
describing adverse drug events (ADEs). The task is a 
binary classification task, where positive samples have 
been assigned an ICD-10 code that denotes an ADE. 
Negative text samples in each group have been assigned 
an ICD-10 code describing a diagnosis that is not drug-
induced. The task is to determine whether the diagnosis 
defined by the ICD-10 code was induced by an ADE or 
not [22].

Pseudonymization
The pseudonymization performed in this study relies on 
NER to locate sensitive entities that should be replaced. 
Two such NER models are used. Both are based on BERT 
and are fine-tuned on the Stockholm EPR PHI Cor-
pus [42]. This corpus contains 380,000 tokens and 4,480 
manually annotated entities in nine classes based on the 
American HIPAA regulation. One model pseudo+ uses 
a non-pseudonymized Swedish clinical BERT model 
[59] and another, slightly weaker model called pseudo is 
based on SweDeClin-BERT [22]. Tables  2 and 3 list the 
per-class performance of both NER models as measured 
using the test splits of their training data. Figure B2 in 
Appendix B shows how these models relate to other parts 
of the Health Bank.

Two pseudonymized versions of each dataset described 
in the previous  section were created, one for each NER 
model. Sensitive entities were detected and then replaced 
with realistic surrogate values based on the method 

Table 1 The five tasks were based on four different clinical 
corpora from the Health Bank. This table lists the size of each 
corpus in terms of the number of documents and tokens. The 
table also specifies the number of possible classes and whether 
the tasks are document-level or token-level classification tasks

Corpus Documents Tokens Classes Level

ICD-10 6,062 930,550 10 Document

ADE 21,725 931,778 2 Document

Factuality 3,710 102,223 6 Document

Factuality NER 3,822 286,205 6 Token

Clinical NER 3,120 178,672 4 Token

4 The number of tokens was calculated using the Punkt tokenizer for Swed-
ish in NLTK [54].

5 The dataset also contains 199 entities annotated for purposes irrelevant to 
our experiments. These annotations were ignored.
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described in this section. The number of sensitive entities 
detected by the pseudonymizers is displayed in Tables 4 
and 5. These numbers include both false and true posi-
tives and indicate the degree to which the data were 
altered in the pseudonymization process.

An overview of the algorithm for surrogate selection is 
available in Dalianis [60], which describes the first ver-
sion of the pseudonymizer. The system has been further 
refined since its initial conception. One adaption made 
from the original pseudonymizer is that the name lists 
used to replace first and last names have been expanded 
to include a wider range of names. The original system 
only considered the most common Swedish names, while 
the current system chooses from 244,000 first names 
and 34,000 surnames. However, a limitation of the pseu-
donymizer is that it lacks functionality for replacing 

organizations. As shown in Tables 4 and 5, organizations 
are very infrequent, meaning that the privacy and perfor-
mance implications are limited.

The pseudonymizer created by Dalianis [60] replaces 
many entities using word lists. For example, a gendered 
name is replaced with another name typically associ-
ated with the same gender, and a gender-neutral name is 
replaced with a gender-neutral name. Streets and places 
in Stockholm randomly with other streets in Stock-
holm. Similarly, other locations in Sweden are replaced 
with locations in the same county, and similar logic 
exists to replace country names with names of countries 
in the same continent. Health care units are changed 
to other health care units using a list of known clinics. 
Other entities are changed using rules. Postal codes are 
replaced with more common postal codes with large 

Table 2 The recall and precision of the pseudo+ model for each 
PII type are displayed. The model is a clinical BERT model [59] that 
has been fine-tuned and evaluated using the Stockholm EPR PHI 
Corpus [42]

PII Class Recall Precision

Age 100% 100%

First Name 100% 100%

Last Name 98% 98%

Partial Date 99% 97%

Full Date 90% 91%

Phone Number 81% 68%

Health Care Unit 85% 94%

Location 100% 100%

Organization 71% 100%

Table 3 The recall and precision of the pseudo model for each 
PII type are displayed. The model is based on the pseudonymized 
SweDeClin-BERT model and has been fine-tuned and evaluated 
using the Stockholm EPR PHI Corpus [42]

PII Class Recall Precision

Age 100% 100%

First Name 97% 98%

Last Name 96% 97%

Partial Date 99% 98%

Full Date 87% 91%

Phone Number 93% 89%

Health Care Unit 89% 88%

Location 89% 81%

Organization 29% 80%

Table 4 Sensitive entities detected by the pseudo model

PII Class Factuality 
NER

Clinical 
NER

ICD‑10 Factuality ADE

Age 1,392 1,149 3,060 1,353 2,995

First Name 528 274 1,185 510 3,965

Last Name 1,105 274 1,829 1,062 4,257

Partial Date 681 554 11,371 644 4,305

Full Date 128 137 18,875 125 22,296

Phone 
Number

148 45 141 142 460

Health Care 
Unit

3,554 2,005 3,365 3,406 7,635

Location 110 78 510 105 689

Organization 5 1 37 4 59

Total words 253,124 191,202 798,120 239,722 788,930

Table 5 Sensitive entities detected by the pseudo+ model

PII Class Factuality 
NER

Clinical 
NER

ICD‑10 Factuality ADE

Age 955 764 2,565 929 2,257

First Name 523 283 1,378 506 3,884

Last Name 1,055 707 1,904 1,016 4,064

Partial Date 369 316 5,740 355 2,995

Full Date 110 121 12,703 107 17,552

Phone 
Number

118 39 75 113 172

Health Care 
Unit

4,285 2,282 12,654 4,117 9,751

Location 182 102 1,217 172 985

Organization 4 12 6 1 66

Total words 253,124 191,202 798,120 239,722 788,930
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populations. Dates are shifted one or two weeks earlier 
or later. Years and ages are handled similarly and are 
increased or decreased by a small and random number 
of years. Phone numbers are changed to other phone 
numbers according to the formatting rules for Swedish 
phone numbers.

Evaluating the impact of pseudonymization
As previously discussed, pseudonymization often entails 
a certain degree of data corruption. The main experiment 
in this study examines this effect on the downstream per-
formance of clinical BERT models pre-trained and fine-
tuned on pseudonymized clinical training data.

Once  the datasets  for the five clinical downstream 
tasks had been pseudonymized, a series of evaluations 
were carried out. Each version of every dataset was used 
to fine-tune and test both BERT models using 10-fold 
cross-validation [61], as illustrated in Fig.  5. Since the 
pseudonymization procedure is a deterministic pre-pro-
cessing step, the pseudonymized models are tested on 
pseudonymized folds. The repeated training and evalu-
ation using different splits resulted in a range of evalu-
ation metrics used to estimate the mean and standard 
deviation of each configuration. The configurations 
were compared based on their  F1 scores6 [63]. All fine-
tuning configurations ran for a maximum of 10 epochs, 
with early stopping implemented to avoid overfitting and 
unnecessary computations.

In total, 30 different combinations of models and 
datasets were evaluated using 10-fold cross-validation. 
For every downstream task, we compare the differ-
ence in the performance of all combinations of mod-
els and pseudonymization approaches. The difference 
between each pair was tested for statistical significance 
using a Mann-Whitney U test7 [64, 65] by compar-
ing the  F1 scores of every fold in both models’ 10-fold 
cross-validations.

Results
The 30 different model-dataset configurations combined 
with the 10-fold cross-validation resulted in 300 fine-
tuned models. The evaluations of these models were used 
to produce  F1 for each configuration and downstream 
task. The means and standard deviations of each evalu-
ation are listed in Table 6. From studying the columns of 
the table, it is apparent that most of the values are within 
a standard deviation of each other.

Comparing every configuration within each down-
stream task resulted in 150 Mann-Whitney U tests 
being performed. Out of these, 126 comparisons 
showed no statistically significant difference for 
p < 0.05 . The remaining 24 comparisons showed vary-
ing degrees of statistical significance. To facilitate a 
focused analysis of the results, a curated sample of the 
significant results is listed in Table 7. These are limited 
to the cases where using real data outperformed using 
pseudonymized data, as these examples challenge the 

Fig. 5 Every dataset described in the “Five clinical downstream tasks” section was pseudonymized using both the pseudo and pseudo+ 
de-identifiers. SweDeClin-BERT and SweClin-BERT were fine-tuned using the non-pseudonymized and the two pseudonymized versions 
of the datasets. All models were compared based on the  F1 scores aggregated from the 10-fold cross-validation of each model

6 Metrics for the token classification tasks were calculated using the 
seqeval library [62] in strict mode. 7 This test is also sometimes referred to as a Wilcoxon rank-sum test.
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main hypothesis of the study. The full list of the 24 sta-
tistically significant differences is provided in Table A1 
of Appendix A.

Notably, none of the statistically significant differ-
ences were cases where SweClin-BERT outperformed 
SweDeClin-BERT. This is apparent from the P column for 
the Weaker model only containing ✗’s. This implies that 
SweDeClin-BERT is a stronger model for the downstream 
tasks in this study. In that case, this difference in general 
model performance explains rows 4–11 of Table  7. Fur-
thermore, there are no examples where training SweDe-
Clin-BERT on different forms of fine-tuning data yielded 
statistically significant differences in performance.

The first three rows in Table 7 show that training Swe-
Clin-BERT using non-pseudonymized data sometimes 
yields statistically significant improvements compared to 
using pseudonymized data. This is found for one pair of 
configurations for three of the tasks. There are no exam-
ples where training on real data outperforms both forms 
of pseudonymized data. For example, the first row finds 
a statistically significant improvement from using real 
ICD-10 data rather than data pseudonymized using the 
pseudo model, but no significant difference is found if the 
pseudo+ model is used.

Table 6 The table compares the performance of each combination of models and datasets. The scores are the mean  F1 scores 
together with their standard deviation based on the results from the 10 folds. P stands for pre-training data and F for fine-tuning 
data. A ✗ denotes that no pseudonymization was done, a ✓ that it was done using the pseudo model and a + means that 
pseudonymization was performed using the pseudo+ model

Pseudonymized Factuality Clinical Entity ICD‑10 Factuality ADE

 P F NER NER Classification Classification Classification

✗ ✗ 0.686±0.013 0.851±0.012 0.821±0.012 0.729±0.020 0.186±0.009

✗ ✓ 0.639±0.038 0.843±0.011 0.810±0.011 0.725±0.021 0.190±0.017

✗ + 0.668±0.024 0.841±0.011 0.814±0.008 0.726±0.018 0.188±0.014

✓ ✗ 0.696±0.019 0.861±0.011 0.835±0.010 0.726±0.025 0.188±0.011

✓ ✓ 0.663±0.048 0.856±0.009 0.825±0.010 0.716±0.016 0.198±0.013

✓ + 0.695±0.013 0.853±0.011 0.832±0.007 0.733±0.022 0.205±0.018

Table 7 Out of 24 statistically significant results, 11 are cases where using non-pseudonymized data yields better results than using 
pseudonymized data. All of these find this effect with regard to the fine-tuning data. The p-value is the result of the Mann-Whitney U 
test for determining if the Weaker model performs worse than the Stronger model. For each model, P indicates whether the pre-training 
data was pseudonymized, and F indicates if the fine-tuning data was pseudonymized. Again, a ✗ denotes that no pseudonymization 
was done, a ✓ that it was done using the pseudo model and a + means that pseudonymization was performed using the pseudo+ 
model

Row Task Weaker model Stronger model p‑value

P F P F

(1) ICD-10 ✗ ✓ ✗ ✗ 0.0378

(2) Factuality NER ✗ ✓ ✗ ✗ 0.0014

(3) Clinical NER ✗ + ✗ ✗ 0.0269

(4) ICD-10 ✗ ✓ ✓ ✗ 0.0007

(5) Clinical NER ✗ ✓ ✓ ✗ 0.0029

(6) Factuality NER ✗ ✓ ✓ ✗ 0.0005

(7) ICD-10 ✗ + ✓ ✗ 0.0011

(8) Clinical NER ✗ + ✓ ✗ 0.0022

(9) Factuality NER ✗ + ✓ ✗ 0.0156

(10) ICD-10 ✗ ✗ ✓ ✗ 0.0086

(11) Clinical NER ✗ ✗ ✓ ✗ 0.0226
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Discussion
The previous section presents several interesting find-
ings. In this section, the results of the study are analyzed 
and contextualized. We also provide ideas for future work 
and discuss the limitations of our study.

Interpreting the significant results
The results of this study are based on a large number of 
Whitney-Mann U tests. When performing 150 statis-
tical tests, there is a non-trivial risk of finding spurious 
statistical differences. The standard cut-off of p < 0.05 
still risks finding differences by chance 1 out of 20 times. 
Nevertheless, there are some trends in Table  7 that are 
interesting to discuss.

First, it is notable that none of the statistically signifi-
cant comparisons find that pre-training with real data 
outperforms pre-training with pseudonymized data. 
A similar result was indicated in a previous study by 
Vakili et al. [22]. However, it is important to note that 
only two pre-trained models were compared in this 
study. While the results strongly suggest that SweDe-
Clin-BERT is better than SweClin-BERT, this does not 
mean that pre-training with pseudonymized data is 
better in general. Examining this would require pre-
training many more BERT models with and without 
pseudonymizing the data. It would likely also require 
comparing pre-trained models initialized from random 
weights rather than the weights of a general-domain 
model. While this could be interesting to study, it is 
beyond the computational constraints imposed by the 
scope of this study.

Some of the statistically significant results in Table  7 
do indicate that fine-tuning a non-pseudonymized 
model using unaltered data can yield stronger results 
than fine-tuning with pseudonymized data. However, 
this is only found for three of the five downstream 
tasks. Furthermore, none of these results hold for both 
of the pseudonymizers. The results in Table 6 also show 
that these examples are still within a standard devia-
tion of each other. The results where fine-tuning on 
real data does outperform using both pseudonymized 
data (such as rows 4 and 7 of Table 7) are results where 
SweDeClin-BERT outperforms SweClin-BERT. Thus, 
these cases are better explained by the overall stronger 
results of SweDeClin-BERT. Crucially, for the pur-
poses of this study, there are no examples of statisti-
cally significant differences where a model trained using 
end-to-end pseudonymization is outperformed by a 
non-pseudonymized version. The hypothesis of this 
study holds since we find no evidence of any significant 
deterioration from pre-training and fine-tuning using 
automatically pseudonymized data.

Quantifying privacy benefits
An important limitation of this study is that the privacy 
benefits of pseudonymization are only quantified in 
terms of the number of removed sensitive entities. This 
assumes that the sensitivity of the training data directly 
corresponds to the sensitivity of the model. This assump-
tion may be pessimistic since it is unlikely that the trained 
model will memorize all remaining sensitive entities. On 
the other hand, relying on metrics such as recall and 
precision also obscures any particularities in the specific 
entities that are missed and if these could be more at risk 
of memorization.

Previous research has suggested that membership infer-
ence attacks can be used for estimating the degree of 
memorization in a model [30, 31, 66]. This approach can 
be effective for some privacy-preserving techniques, such 
as differentially private learning [34]. Unfortunately, this 
method has been shown to work poorly when applied to 
models trained using pseudonymized data [67].

The lack of robust methods for quantifying the privacy 
gains of pseudonymizing training data remains a signifi-
cant drawback of the technique. For example, differen-
tially private learning, as described in the background, 
gives rigorous mathematical privacy guarantees. In con-
trast, while the results in this article show that privacy 
can be gained without sacrificing data utility, the exact 
privacy gains remain unknown. However, the estimated 
amount of remaining PII in the training data provides 
an upper bound concerning the entities covered by the 
pseudonymizer. In any case, there is no consensus on 
how privacy should be measured from a regulatory stand-
point. Indeed, according to some strict but prominent 
interpretations of the GDPR, legal use of data containing 
PII may be next to impossible [44]. The development of 
GDPR-compliant privacy metrics should preferably be 
conducted in communication with the legal community.

Domain‑adaptive pre‑training
Both pre-trained models—SweDeClin-BERT and Swe-
Clin-BERT—are initialized with the weights of the 
general-domain Swedish KB-BERT model. As shown 
by Lamproudis et  al. [53], this allows them to converge 
faster when compared to pre-training from randomly 
initialized weights. This is beneficial from a resource per-
spective, as pre-training is both time and energy consum-
ing. It can also have positive benefits for privacy, as the 
models have been trained using both sensitive and non-
sensitive corpora.

While there are benefits to initializing the models from 
an already capable general-domain model, this decision 
is also a possible limitation of our methodology. While 
the previous study by Lamproudis et  al. showed that 
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domain-adapted models and models pre-trained from 
scratch eventually converge, they did not look at whether 
pseudonymization may affect this result. Although PII 
constitutes a very small portion of the total data [68], it 
is plausible that pseudonymization introduces variability 
to the pre-training corpora. This added variability could 
make it easier or harder to learn. Whether pseudonymiz-
ing the pre-training corpora has any substantial impact 
on the rate of convergence or the final quality of a model 
trained from scratch is an interesting idea for future 
research.

Identifying PII in clinical text
The effectiveness of end-to-end pseudonymization as a 
privacy-preserving technique depends largely on the abil-
ity to accurately identify PII in the corpora used for pre-
training and fine-tuning the clinical language models. In 
this study, a manually annotated PII corpus [42] was used 
to fine-tune clinical BERT models to identify PII. The 
performance of these models – estimated through eval-
uations on held-out test data from the Stockholm EPR 
PHI Corpus – is reported in Table  2 and 3. While both 
precision and recall are fairly high for most PII classes, 
we have not evaluated the performance of the model to 
identify PII in the downstream task corpora, nor in the 
pre-training corpus. A previous study showed that the 
performance of a CRF model trained on this PII corpus 
performed worse when applied to other types of clinical 
notes and that the performance varied quite considerably 
across different types of clinical notes, i.e. produced in 
different clinical specialties, written by persons in differ-
ent professional roles, and under different headings [69]. 
In part, this may also be explained by the fact that the 
prevalence of PII varies across different types of clinical 
notes. While the overall PII density8 was estimated to be 
around 1.57%, it was estimated to be as low as 0.97% for 
notes written by physiotherapists and as high as 2.19% in 
discharge notes [68].

The results of this study show that the utility of the 
models was not negatively affected by being trained on 
pseudonymized data compared to using the original sen-
sitive data, allowing privacy risks to be reduced without 
sacrificing predictive performance. However, the utility 
would likely, at some point, be reduced if a pseudonymi-
zation system with poor precision substantially distorted 
the data. Here, two pseudonymizers with different per-
formance levels were evaluated and the results did not 
indicate any significant difference in terms of their impact 
on data utility for fine-tuning clinical BERT models. 

However, previous work evaluating the impact of pseu-
donymization on the performance of clinical NER tasks 
showed that training pseudonymizers with higher recall 
at the expense of lower precision does eventually harm 
data utility [48]. In future work, it would be interesting to 
determine at what point – e.g., at a certain level of preci-
sion – that data utility starts to be significantly impacted. 
However, this tolerance threshold would likely need to be 
determined separately for different downstream tasks.

Sharing data and models
The clinical language model SweDeClin-BERT and the 
Stockholm EPR Gastro ICD-10 Pseudo Corpus are avail-
able for academic use worldwide9. Based on the results 
of this study, we plan to make the other pseudonymized 
corpora used in this study available as well. However, this 
requires supplementary ethical approval from the Swed-
ish Ethical Review Authority. Moving forward, an inter-
esting issue is whether it is also possible to make these 
pseudonymized clinical corpora and language models 
available to industry. This would enable commercial 
applications that could be used in real clinical settings. 
The benefits of sharing data and models must also be bal-
anced against the privacy risks of doing so. From a legal 
standpoint, sharing data among academics can be justi-
fied due to the explicit provisions that the GDPR makes 
for research. These provisions do not apply to commer-
cial use, making sharing data with commercial partners 
difficult.

As noted earlier in the discussion, there is no consen-
sus regarding how privacy should be quantified when 
dealing with NLP models. The current flora of PLMs is 
heterogeneous, including both masked language models 
like BERT and generative models such as the GPT family. 
Risk assessments should likely be done on a per-model 
basis, given the vast differences between models in terms 
of architectures, the scale of their pre-training data, their 
number of parameters, and what privacy-preserving 
techniques have been applied. The models used in this 
study are based on the modestly-sized  BERTBASE model, 
a non-generative model composed of approximately 110 
million parameters. Although there have been several 
studies on the matter [24–27], there are no known exam-
ples of successful training data extraction attacks target-
ing BERT models.

It is important to note that the performance measures 
attained in this study do not necessarily hold for other 
sets of hospitals. All models and datasets use data from 
the Health Bank research infrastructure, which come 

8 Defined as the number of PII-labeled tokens divided by the total number 
of tokens.

9 Contact the authors for details on how to gain access to the data and mod-
els.
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from a specific set of medical clinical units. It is well-
known that models trained on one set of data sources 
may perform worse when confronted with novel data 
[37]. Indeed, as noted in the previous section, perfor-
mance can vary even within a set of data sources. Further 
complicating the situation, the clinical domain gener-
ally struggles with the many restrictions on sharing data. 
While understandable and justified from a privacy per-
spective, these restrictions make it difficult to evaluate 
models and datasets cross-institutionally. Nevertheless, 
two studies applying SweDeClin-BERT to new data have 
been carried out [70, 71], with encouraging results.

Conclusion
This study evaluates the impact of pre-training and 
fine-tuning using automatically pseudonymized train-
ing data. Two clinical BERT models, one trained on 
real data and one trained on pseudonymized data, are 
evaluated on five clinical downstream tasks. The data-
sets for these tasks are used both in unaltered form and 
in pseudonymized versions. The results from evaluating 
all different configurations of models and datasets are 
tested using Mann-Whitney U tests.

The analysis of the statistically significant tests finds 
limited evidence supporting that, in some cases, fine-
tuning non-pseudonymized PLMs may work better if 
using non-pseudonymized data. Such an effect, if real, 
is small. Furthermore, we find no cases where pre-
training and fine-tuning using pseudonymized data 
end-to-end harms utility. This demonstrates that pseu-
donymization can decrease the privacy risks of using 
clinical data for NLP without harming the utility of the 
machine learning models.
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Abstract

Many sensitive domains – such as the clinical
domain – lack widely available datasets due to
privacy risks. The increasing generative capa-
bilities of large language models (LLMs) have
made synthetic datasets a viable path forward.
In this study, we domain-adapt LLMs to the
clinical domain and generate synthetic clini-
cal texts that are machine-annotated with tags
for personally identifiable information using
capable encoder-based NER models. The syn-
thetic corpora are then used to train synthetic
NER models. The results show that training
NER models using synthetic corpora incurs
only a small drop in predictive performance.
The limits of this process are investigated in a
systematic ablation study – using both Swedish
and Spanish data. Our analysis shows that
smaller datasets can be sufficient for domain-
adapting LLMs for data synthesis. Instead, the
effectiveness of this process is almost entirely
contingent on the performance of the machine-
annotating NER models trained using the origi-
nal data.

1 Introduction

Many useful applications in NLP involve domains
where data are sensitive. These privacy risks, and
the accompanying limits to sharing data, have tra-
ditionally been solved by de-identification. This
process involves finding parts of the text that can be
used to identify an individual. Such information is
typically referred to as personally identifiable infor-
mation (PII). After locating PII, the passages need
to be processed to remove or obscure the PII. Tradi-
tionally, this time-consuming work has been done
manually. Automatic de-identification (Meystre
et al., 2010) is a machine-driven approach that typ-
ically relies on named entity recognition (NER) to
detect PII that needs to be removed.

Unfortunately, the PII datasets that exist to assist
in privacy preservation are themselves sensitive,
and can typically not be shared. This circularity,

together with the increasing generative capabilities
of large language models (LLMs), has led to a
growing interest in overcoming data limitations by
eschewing the use of real data altogether. Instead,
one can use generated synthetic corpora.

Previous studies have mainly been concerned
with evaluating the privacy of the synthetic text
(Yue et al., 2023; Miranda et al., 2024) or with
creating the strongest-performing model possible
using synthetic data (Libbi et al., 2021; Hiebel et al.,
2023; Liu et al., 2025). Our study instead examines
how synthetic data can be produced under con-
strained resources. This understudied problem is
common in clinical institutions that lack resources
both in terms of data and computational hardware.

We carry out a systematic evaluation of key
factors impacting the utility of LLM-generated
synthetic data as training data for downstream
tasks. Specifically, we study synthetic NER data
for PII detection - an important task in the privacy-
sensitive healthcare domain. Synthetic clinical data
are generated using domain-adapted LLMs and
machine-annotated using fine-tuned NER models.
The evaluations focus primarily on the utility of
synthetic data for training NER models.

Through extensive experimentation, we inves-
tigate the impact on utility of (i) the amount of
data used for domain adaptation of the synthesiz-
ing LLM, (ii) the quality of the machine annotator,
(iii) the amount of synthetic data generated, and
(iv) model size. We also quantify the diversity and
privacy of the generated data, and carry out experi-
ments across two languages – Swedish and Spanish.
Our main contributions are:

1. Demonstrating that moderately-sized LLMs
can be adapted to the clinical domain to pro-
duce high-utility text with relatively small
amounts of in-domain data.

2. Showing that using synthetic machine-
annotated data allows for training NER mod-
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els that perform only slightly worse compared
to using real, sensitive data, while reducing
the risk of exposing sensitive information in
the original data.

3. Finding that, for the task of detecting PII, us-
ing larger generative LLMs for synthesis does
not yield clear improvements in terms of util-
ity. Rather, downstream performance relies
on having a high-quality gold standard NER
model for providing machine annotations.

2 Related Research

There have been several approaches to generating
synthetic clinical data for a number of languages
and for different purposes. Broadly speaking, most
prior works have either focused on maximizing
the utility of the synthetic data, or on studying the
privacy characteristics of synthetic corpora.

While most papers studying data synthesis con-
tain some form of privacy analysis, other papers
have this as their main focus. Several papers study
how differentially private learning impacts the util-
ity (Yue et al., 2023; Igamberdiev et al., 2024) and
the privacy of the data (Miranda et al., 2024). While
privacy is an important justification for synthesiz-
ing data, it is not the main focus of our paper.

The second main current in the literature ex-
plores how to optimize synthesis to create the
best possible synthetic corpora. These papers syn-
thesize data using locally domain-adapted LLMs
(Ive et al., 2020; Hiebel et al., 2023), or using
instruction-tuned models (Kiefer, 2024; Liu et al.,
2025). They show that synthesis of high-utility data
is possible. However, fewer papers systematically
examine the conditions required for success.

In our literature review, two studies stand out
as particularly relevant to this study. Libbi et al.
(2021) synthesize a Dutch corpus for PII detection
using a GPT-2 model (Radford et al., 2019) domain-
adapted using 1 million documents and add rule-
based machine annotations. Our study follows the
same overall process for synthesis, but uses much
less data and more modern NLP techniques. Xu
et al. (2023) similarly create synthetic corpora and
experiment with constraining the total amount of
data used, but do so for the relation extraction task.
In this paper, we focus on a different task – NER
for PII detection. Furthermore, in contrast to both
studies, we systematically evaluate the impact of
constraining data alternately for both domain adap-
tation and machine annotation, try two different

model sizes, synthesize corpora of different sizes,
and validate our results across two languages.

3 Data and Methods

In this study, we investigate the impact of various
factors related to generating synthetic data for fine-
tuning encoder language models on downstream
tasks in the healthcare domain. Specifically, we
study the possibility of generating synthetic clini-
cal text for training NER models for detecting PII.
The synthetic text is created by a domain-adapted
generative LLM and then machine-annotated for
PII using a fine-tuned encoder model. This process
follows the structure of previous works (Libbi et al.,
2021) and is illustrated in Figure 1.

3.1 Generative Models
The aim of this study is to examine the feasibility of
generating training data for NER models detecting
PII. The foundation of the training data are syn-
thetic texts, generated using autoregressive LLMs.
Two model families are used as a base for domain
adaptation to the clinical domain.

GPT-SW3 For Swedish, we use the GPT-SW3
model (Ekgren et al., 2024). This autore-
gressive language model was trained using
approximately 320 billion tokens. The data
were mainly composed of Scandinavian texts
and 35.3% of the data is Swedish.

FLOR The autoregressive model used to gener-
ate Spanish data is the FLOR model (Da Dalt
et al., 2024). The model was initialized with
the weights of the multi-lingual BLOOM
model (Scao et al., 2023) and trained with
continued pre-training. The data used spanned
140 billion tokens and was composed of equal
parts English, Spanish, and Catalan data.

Both models are used autoregressively, without
instruction tuning. The hypothetical – but often
occurring – scenario motivating the study design
is where researchers have access to a small and
sensitive NER dataset that cannot be shared outside
of their organization. Zero-shot synthesis is an
alternative strategy, but we leave to future research
to evaluate if this approach can yield clinical texts
that are sufficiently similar to the real data. Instead,
we perform different degrees of domain-adaptive
fine-tuning to train the LLMs to produce such texts.

The primary experiments in Section 4.1 used
the versions of FLOR and GPT-SW3 with 6.3
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Figure 1: This figure illustrates the steps for creating the synthetic corpora. A gold standard corpus is used to train a
NER model and to domain-adapt a general-domain LLM to produce synthetic clinical data. The LLM is used to
generate synthetic data, and the NER model is used to add machine annotations. Later, these corpora are used to
train synthetic NER models that are evaluated on gold standard test data.

billion and 6.7 billion parameters, respectively.
Smaller models with 1.3 billion parameters were
used in Section 4.4 to investigate the impact of
using smaller models for synthesis.

3.2 NER Datasets

This study focuses on a particular type of NER
dataset – NER for detecting PII. Such datasets exist
for several languages but are, as discussed in the in-
troduction, very difficult to share and access. This
is particularly true for datasets targeting the clinical
domain. In this study, two datasets for detecting
PII in clinical data are used.

SEPR PHI The Stockholm EPR PHI Pseudo Cor-
pus (SEPR PHI) is a Swedish dataset from
five different healthcare units consisting of
100 patient records split into 21,553 sentences.
The corpus spans 282,766 tokens where 6,755
are manually annotated for nine different PII
classes (Velupillai et al., 2009). The dataset
has then been pseudonymized, meaning that
all the annotated entities have been replaced
with realistic pseudonyms (Dalianis, 2019).

MEDDOCAN The second dataset is MEDDO-
CAN – a Spanish dataset consisting of 1,000
medical texts. These are based on clini-
cal cases augmented with PII from auxiliary
sources (Marimon et al., 2019). The texts
were then manually annotated for 19 different
PII. Out of 504,569 tokens, 41,859 are tagged
as PII.

Each dataset was split into three subsets: one for
training, another for validation, and a third held-
out subset for testing. The training sets are used

to domain-adapt the generative models and to train
the machine-annotating NER models. The purpose
of the validation subsets is two-fold. First, they are
used to monitor the training processes when fine-
tuning the models for synthesis and NER. Once the
models for synthesis have been trained, the valida-
tion data also serve as starting points when creating
the synthetic corpora. Finally, the quality of the
NER models trained using the synthetic corpora
is evaluated using the held-out test sets, as these
are not in any way part of the training or synthesis
processes.

3.3 Encoder Models

This study trains NER models by fine-tuning pre-
trained encoder models. Two different models are
used, one for each language.

SweDeClin-BERT We use SweDeClin-BERT
(Vakili et al., 2022) for Swedish data, as
it has previously shown strong performance
on the SEPR PHI corpus. This BERT-style
model is based on the general-domain KB-
BERT model (Devlin et al., 2019; Malmsten
et al., 2020) and adapted to the clinical do-
main through continued pre-training on the
Swedish Health Bank corpus (Dalianis et al.,
2015). It consists of 125 million parameters.

roberta-base-bne For Spanish data, we use the
roberta-base-bne model trained by Gutiérrez-
Fandiño et al. (2022). This RoBERTa-based
model (Liu et al., 2019) consists of 125 mil-
lion parameters. It was trained using a large
Spanish corpus collected by the National Li-
brary of Spain and performs strongly on the
MEDDOCAN task.
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These models are used for two purposes. First,
they are fine-tuned using the gold standard datasets.
These gold models are used to provide machine
annotations to the synthesized corpora. They are
also used as baselines for the later, synthetic NER
models. The synthetic models are also initialized
from the pre-trained encoder models, but are fine-
tuned on the synthetic, machine-annotated corpora.
The gold and synthetic NER models are then eval-
uated and compared to each other to measure the
performance implications of using synthetic data.

3.4 Synthesizing and Evaluating the Corpora

The generative models were domain-adapted by
fine-tuning them for causal language modeling us-
ing QLoRA (Dettmers et al., 2023) as implemented
in the Axolotl framework1 with r = 8 and α = 32.
A comprehensive specification of all hyperparam-
eters is available in Appendix A. GPT-SW3 was
domain adapted using the Swedish SEPR PHI cor-
pus and FLOR using the Spanish MEDDOCAN
corpus. Domain adaptation was carried out with
varying amounts of data to determine the impact
on the utility of the synthetic data.

As mentioned in Section 3.2, the validation sets
used for monitoring the fine-tuning process were
also used for data synthesis. The 5% validation
subsets were used to create starting points for gen-
erating text, as suggested by Libbi et al. (2021).
The starting points were created by taking the first
three words of each document in the validation sets.

Synthetic corpora have an intriguing advantage
over real corpora: they can be arbitrarily large.
Taking this feature into account, each three-word
starting point was used to create 80 new samples.
Consequently, the synthetic corpora are four times
larger than the gold-standard corpora. In Section
4.5, the benefits of exploiting this feature are exam-
ined through experiments that use smaller amounts
of synthetic data.

Synthesis was done using the vLLM library
(Kwon et al., 2023). We use nucleus sampling
(Holtzman et al., 2020) with p = 0.95 and the min-
imum token length is set to 10. The maximum
token length is set to the length of the longest doc-
ument in the validation set, or at least 50. The
temperature was set to t = 1.0 after preliminary
experiments showed that varying 0.8 ≤ t ≤ 1.2
had very little impact on the results.

Finally, the synthetic texts were machine-

1https://github.com/axolotl-ai-cloud/axolotl

annotated for PII entities. These were added us-
ing NER models fine-tuned on the gold-standard
datasets. The gold-standard and synthetic NER
models were trained for 6 epochs with a batch size
of 16. The limited context window of the models
was overcome, both during training and machine
annotation, by splitting long documents into 128-
word chunks. This chunking was done both during
training and when using the gold-standard models
for machine annotation.

The whole process, from domain adaptation to
training and evaluating the synthetic NER models,
was done through five-fold cross-validation. The
utility of the synthetic corpora was measured using
token-level F1 score. These evaluations rely on
each fold’s held-out gold-standard test data.

4 Experiments

The main contribution of this paper is a systematic
investigation into how the different steps of syn-
thetic corpora creation respond to data constraints.
This section describes these experiments and their
results. All experiments, except for those in Sec-
tion 4.5, take advantage of the unbounded nature of
synthetic corpora and allow them to be four times
larger than the gold standard datasets. The perfor-
mance of the NER models is summarized using
token-level F1 scores tested on gold-standard data.
All averages and standard deviations are calculated
based on five-fold cross-validation.

4.1 Constraining the Total Amount of Data

The first experiment of this study investigated how
much data is required to produce a well-performing
NER model for detecting PII. The amount of data
used for domain-adapting the generative model and
fine-tuning the gold NER model is varied. This
models the common situation where there is limited
access to data, and demonstrates what performance
can be expected for different data sizes.

Within each fold, this is scaled to between 5%
and 95% of the training data in the fold. Five dif-
ferent amounts are used: 5%, 10%, 25%, 50%, and
95%. These subsets correspond to the Sensitive
NER corpus in Figure 1. The final 5% are used for
validation and for creating prompts for synthesis.

Synthetic corpora have an advantage over real
corpora: their size is only constrained by the
amount of compute available for generation. As ex-
plained in Section 3.4, this feature is incorporated
by letting the synthetic data be four times larger
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% of fold SEPR PHI MEDDOCAN

Gold Synthetic ∆ Gold Synthetic ∆

5% 0.707 ± 0.037 0.724 ± 0.035 -0.017 ± 0.051 0.931 ± 0.012 0.309 ± 0.060 0.622 ± 0.061
25% 0.871 ± 0.010 0.847 ± 0.010 0.024 ± 0.014 0.967 ± 0.003 0.964 ± 0.005 0.003 ± 0.006
50% 0.908 ± 0.007 0.885 ± 0.010 0.023 ± 0.012 0.973 ± 0.004 0.970 ± 0.004 0.003 ± 0.006
95% 0.926 ± 0.005 0.896 ± 0.007 0.029 ± 0.009 0.978 ± 0.005 0.973 ± 0.003 0.005 ± 0.006

Table 1: Between 5% and 95% of the training data in each fold was used to domain-adapt the generative LLMs and
the machine-annotating encoder models. In this table, the F1 scores are listed for both the NER models trained on
gold standard data and the synthetic data, as well as the difference. The F1 are the average scores over all 5 folds
and the standard deviation is listed as well.

than the original datasets. In later experiments, we
analyze to what extent this advantage helps.

Table 1 lists the average F1 scores and their stan-
dard deviation for each tested configuration. Unsur-
prisingly, the performance of the gold models – the
models trained on the real data – increases as more
and more data are available for training. The MED-
DOCAN models are more resilient to shrinking the
amount of training data, but both cases show clear
improvements as more data are available. The F1
scores of the models trained on synthetic corpora
follow a similar pattern. Increasing the data al-
lows for more data to domain-adapt the generative
model and for training a better machine annotator.

4.2 Scaling the Data for Domain Adaptation
The experiments in the previous section show that
it is indeed feasible to create well-performing NER
models trained on synthetic data using our method.
On the other hand, the results depend on the amount
of data used for domain-adapting the synthesizing
generative LLM and for fine-tuning the machine
annotating encoder model. In the previous experi-
ment, the data were fixed for both purposes.

This section describes an ablation study that mea-
sures the impact of varying the amounts of data
used for domain adaptation. As before, the syn-
thetic corpora are allowed to be four times larger
than the original corpora. In these experiments, the
amount of data used for fine-tuning the machine an-
notator is kept constant at 95%, while the amount
used for domain adaptation is varied between 5%
and 95%. Additionally, we also use synthetic cor-
pora generated without domain adaptation.

The average F1 scores of the models resulting
from these experiments are listed in Table 2. Unsur-
prisingly, the worst-performing models are those
that were trained using corpora synthesized without
domain adaptation. These results show that domain
adaptation does matter. However, there are clearly

% for d.a. SEPR PHI MEDDOCAN

0% 0.547 ± 0.178 0.295 ± 0.011
5% 0.873 ± 0.014 0.313 ± 0.032

25% 0.877 ± 0.010 0.970 ± 0.005
50% 0.896 ± 0.007 0.970 ± 0.005
95% 0.896 ± 0.007 0.973 ± 0.003

Gold 0.926 ± 0.005 0.978 ± 0.005

Table 2: The amount of data used for domain adaptation
(d.a.) of the synthesizing generative LLM was varied
from 0% to 95% of the training data in each fold. The
average F1 scores of the synthetic NER models and the
gold-standard models are listed.

diminishing returns from increasing the amount of
data for domain adaptation. Increasing the amount
of data from 50% to 95% produces nearly identical
results.

4.3 Varying the Data for Machine Annotation

The experiments in Section 4.2 indicated that the
synthetic corpora improve when more data are
available to domain adapt the model generating
the text. However, the values in Table 2 and the val-
ues from the original experiments in Table 1 differ
greatly. The results indicate that using a strong ma-
chine annotator – as in Section 4.2 – explains more
of the performance. Another set of experiments
was conducted to examine this effect.

In contrast to the previous experiments, these
experiments use 95% of the data for domain adap-
tation of the generative model that produces the
synthetic text. This corpus is still allowed to be
four times larger than the original training corpus.
The data used to create the machine annotating
NER model is varied between 5% and 95%.

Models were trained and evaluated using 5-fold
cross-validation and the resulting F1 scores are
listed in Table 3. The average F1 scores adhere
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% for m.a. SEPR PHI MEDDOCAN

Gold Synthetic Gold Synthetic

5% 0.707 ± 0.037 0.725 ± 0.039 0.931 ± 0.012 0.942 ± 0.010
25% 0.871 ± 0.010 0.858 ± 0.012 0.967 ± 0.003 0.967 ± 0.004
50% 0.908 ± 0.007 0.889 ± 0.005 0.973 ± 0.004 0.965 ± 0.009
95% 0.926 ± 0.005 0.896 ± 0.007 0.978 ± 0.005 0.973 ± 0.003

Table 3: The amount of data used to create the machine annotator (m.a.) varied between 5% and 95% of the training
data in each fold. This table compares the downstream F1 scores of the synthetic and gold-standard NER models.

Model size SEPR PHI MEDDOCAN

Small 0.883 ± 0.006 0.973 ± 0.004
Larger 0.896 ± 0.007 0.973 ± 0.003

Gold 0.926 ± 0.005 0.973 ± 0.004

Table 4: GPT-SW3 and FLOR are available in smaller
versions than those used in the other experiments. This
table compares the downstream F1 scores obtained using
the smaller and larger versions for domain adaptation.

closely to those of the gold standard model that
is trained on real data. This is especially clear
when contrasting the scores with what was shown
in Table 2. This strongly suggests that the perfor-
mance of the synthetic models is mainly explained
by the amount of data available when creating the
machine annotators.

4.4 Using Smaller Generative Models

The generative LLMs used for domain adaptation
in this study – GPT-SW3 and FLOR – are available
in different sizes. The previous experiments have
used the 6.3 billion and 6.7 billion versions of the
models. Although these models are not very large
from a research perspective, domain-adapting them
still requires expensive hardware. In this experi-
ment, we try synthesizing data using the smaller
versions of these LLMs.

Both smaller versions consist of approximately
1.3 billion parameters. Table 4 lists the F1 scores
obtained when using 95% of the data for domain
adaptation and for creating the machine annotator.
Despite being around five times smaller than their
larger counterparts, the smaller models yielded very
similar results to their larger counterparts. This sug-
gests that smaller models are a viable alternative,
at least for synthesizing data for PII identification.

Synthesized SEPR PHI MEDDOCANamount

5% 0.814 ± 0.008 0.938 ± 0.006
100% 0.889 ± 0.009 0.968 ± 0.005
400% 0.896 ± 0.007 0.973 ± 0.004

Gold 0.920 ± 0.008 0.977 ± 0.005

Table 5: The synthetic corpora in the other experiments
are four times larger than the original gold standards.
This table lists the downstream F1 scores of NER models
trained on varying amounts of synthetic data.

4.5 How Much Synthesis is Enough?

In all previous experiments, we have exploited the
fact that synthetic corpora can be generated indef-
initely. This has been represented by letting the
corpora be four times larger than the training data.
In this experiment, we examine the effect of remov-
ing this advantage. In addition to training on the
four times larger corpora, we also trained models
using corpora of the same size as the training cor-
pora. Finally, we trained models using just 5% of
the synthetic corpora. The data used for domain
adaptation and fine-tuning the machine annotator
was kept at 95%.

Table 5 shows that, for these datasets, generating
extra data has a small impact on the results. Gener-
ating a synthetic corpus that is the same size as the
original corpus yields downstream results that are
within one standard deviation of the results from
generating a four times larger corpus. This is true
both for MEDDOCAN and for SEPR PHI.

4.6 Diversity of the Generated Data

Three different metrics were used to quantify the
data themselves. These were lexical diversity, the
length of the documents, and the number of enti-
ties in the documents. The metrics were calculated
both for the generated corpora and for the gold
standard corpora. The lexical diversity was esti-
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% for d.a. SEPR PHI MEDDOCAN

Diversity Doc. length Doc. labels Diversity Doc. length Doc. labels

0% 4.28 ± 0.27 53.80 ± 25.21 1.62 ± 7.25 2.69 ± 0.10 542.42 ± 623.43 34.46 ± 111.86
5% 4.52 ± 0.30 18.28 ± 16.66 0.82 ± 4.04 2.58 ± 0.03 644.30 ± 1729.28 57.26 ± 181.33
25% 4.27 ± 0.22 16.73 ± 16.41 0.73 ± 3.95 2.44 ± 0.02 525.79 ± 367.61 56.34 ± 27.13
50% 4.38 ± 0.15 16.41 ± 16.32 0.81 ± 4.12 2.37 ± 0.05 519.07 ± 346.71 57.18 ± 25.18
95% 4.25 ± 0.29 16.69 ± 17.57 0.85 ± 4.36 2.40 ± 0.03 508.63 ± 347.05 57.91 ± 25.67

Gold 6.26 ± 0.03 13.12 ± 18.52 0.31 ± 2.12 5.55 ± 0.03 510.28 ± 427.85 48.73 ± 19.97

Table 6: The lexical diversity, average length, and average number of annotated labels per document was calculated
for the synthetic corpora and for the gold corpora. The synthetic corpora were machine annotated using models
trained on 95% of the data. The domain adaptation (d.a.) varied between using 95% of the data, to using none.

mated by stemming each token and then dividing
the number of unique stems by the total number
of tokens. Stems were obtained using the Swedish
and Spanish Snowball stemmers implemented in
NLTK (Bird and Loper, 2004).

Table 6 lists the three metrics for all of the con-
sidered corpora. For the synthetic corpora, the
average number of entities was estimated using
the strongest machine annotator for each dataset
trained using 95% of the gold corpora. The diver-
sity and average lengths of the synthetic corpora
could be calculated before machine annotation.

The lexical diversity of the synthetic data is fairly
consistent, regardless of the amount of data used
for domain adaptation. It is also consistently lower
than in the gold corpora. This is likely due to the
temperature being fixed across the configurations.
As explained in Section 3.4, varying the temper-
ature had a negligible impact on the downstream
performance of the synthetic models. However, it
is likely that the lexical diversity of the corpora
would increase for higher temperatures.

The largest adjustment from adding domain
adaptation is that the synthetic corpora become
closer to the gold corpora in terms of the number of
entities per document and in length. However, the
average number of entities per document tends to
be noticeably higher in the synthetic corpora than
in the gold corpora.

4.7 Estimating Privacy

Creating a synthetic variant of a sensitive dataset
only protects the original data if the synthetic and
sensitive datasets are sufficiently different. A com-
mon proxy for measuring these risks is to study the
n-grams of the original and synthetic corpora (Ive
et al., 2020; Hiebel et al., 2023). We calculated
the n-gram recall of each generated dataset and the

training data from which it is derived. This met-
ric measures the proportion of unique n-grams in
a reference document that is shared with a candi-
date document2. In this experiment, the reference
documents are the real sensitive corpora used for
domain adaptation and the synthetic corpora are
the candidates. In other words, given a real corpus
with a set of n-grams R and a synthetic corpus with
n-grams S:

n-gram recall =
|R ∩ S|
|R| . (1)

Since the data in this study are tagged for PII, a
PII-sensitive n-gram recall is also used to estimate
the degree of leakage of potentially sensitive infor-
mation. Instead of considering all n-grams R in the
reference document, as in Equation 1, this metric
only considers the n-grams R∗ ⊆ R that overlap
with sensitive entities in the gold standard corpus.

N-gram recall values were calculated for n =
{3, 5, 10}. This was done for each of the 5 folds in
the previous experiments. The n-grams were cre-
ated by concatenating n tokens from the tokenizers
of the domain-adapted generative models. The val-
ues for 5-grams are summarized in Table 7 and the
other values in Tables 10 and 11 in Appendix B.

All three configurations produced similar pat-
terns. The bottom row of Table 7 shows the aver-
age 5-gram recall scores of the synthetic corpora
that were generated without any domain adaptation.
These values were obtained by comparing these
corpora to the 95% training corpora. These values
serve as a useful baseline since any shared n-grams
in these cases are purely incidental.

More interestingly, the n-gram recall values de-
crease as more data are used for domain-adapting

2It is similar to ROUGE (Lin, 2004) but is used on a corpus
level rather than for comparing individual documents.
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% for d.a. SEPR PHI MEDDOCAN

All 5-grams Sensitive 5-grams All 5-grams Sensitive 5-grams

5% 0.328 ± 0.041 0.233 ± 0.066 0.005 ± 0.000 0.008 ± 0.001
10% 0.216 ± 0.002 0.154 ± 0.016 0.003 ± 0.000 0.006 ± 0.001
25% 0.183 ± 0.015 0.169 ± 0.021 0.003 ± 0.000 0.004 ± 0.000
50% 0.134 ± 0.021 0.141 ± 0.017 0.002 ± 0.000 0.003 ± 0.000
95% 0.122 ± 0.013 0.132 ± 0.010 0.002 ± 0.000 0.003 ± 0.000

0% 0.028 ± 0.002 0.047 ± 0.002 0.001 ± 0.000 0.001 ± 0.000

Table 7: 5-gram recall values were calculated for each synthetic corpus over five folds. We calculate both the general
5-gram recall and the recall for 5-grams overlapping with PII in the training corpora. The synthetic corpora varied
in the amount of data used for domain adaptation (d.a.) before generation. The bottom row shows the values for the
synthetic corpora generated without domain adaptation when compared to the 95% gold corpora.

the generating model. Although this trend is not
linear – there is a small increase between 10% and
25% for sensitive 5-grams in SEPR PHI – and the
standard deviations are large, there is a clear de-
crease between using 5% and using 95% of the data.
The most likely explanation is that the number of
unique in-domain n-grams increases as the training
data grows, meaning that each individual n-gram
is less likely to be memorized. Conversely, using
too little data for domain adaptation can cause the
model to overfit.

While both general and sensitive n-gram recall
decrease when more data are used, the sensitive
n-gram recall is sometimes slightly higher. This
could indicate that n-grams overlapping with sen-
sitive entities may be at a higher risk of memo-
rization, although this effect is very small. The
n-gram recall values are also significantly higher in
SEPR PHI than in MEDDOCAN. There is no clear
explanation for this, other than that they differ sub-
stantially in their structure. MEDDOCAN contains
fewer and longer documents, whereas SEPR PHI
contains many but shorter documents. Inspecting
the overlapping n-grams also revealed that many
of them are related to dates or other vague but oft-
occurring categories of PII.

5 Discussion

The results in Table 2 show that domain adaptation –
to a point – was needed to generate synthetic data of
sufficient quality. From a privacy perspective, there
is, of course, a risk that domain adaptation causes
sensitive data to be memorized and reproduced dur-
ing data synthesis. The results in Table 7 indicate
that a lower proportion of sensitive n-grams were
reproduced when more data were used for domain
adaptation. On the other hand, using fewer data

minimizes the attack surface of the models. If the
data requirements are lower, this may make it feasi-
ble to, for example, manually de-identify the data,
or to audit an automatic de-identification of them.

An example of an application of our results is
cross-institutional validation of NLP systems. In
sensitive domains such as the clinical domain, re-
searchers are often barred from sharing their data
and trained models due to privacy concerns. A
common is where research group (A) has created
a system that works very well on their in-house
data. Due to privacy regulations, another group (B)
cannot share their data with (A), and this makes it
difficult for (A) and (B) to validate if the system
generalizes. An example of an attempt to work
under these constraints is described by Bridal et al.
(2022). They were able to make limited claims of
generalization but where limited due to the restric-
tions on sharing data. The method for synthesis
explored in our paper would allow these research
groups to share synthetic versions of their datasets
or models, as these are much less sensitive than
artifacts based on real data.

6 Conclusions

Data synthesis is an attractive tool for dealing with
data scarcity and privacy risks. However, synthesis
itself can be challenging when access to data is
constrained. Through extensive ablation studies –
validated on models and data in two different lan-
guages – our experiments show that not all parts of
the synthesis process are equally sensitive to these
resource constraints. Domain adapting the models
to create high-utility clinical text did not require us-
ing all of the data. The experiments show that using
between 25% and 50% of the data can be enough
for domain adaptation, at least for these datasets.
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Furthermore, the experiments also show that using
smaller generative LLMs does not necessarily incur
a big loss of utility. Instead, our experiments show
that the most important factor is the data available
to create machine annotations.

These findings are a valuable contribution to
the clinical NLP and privacy communities, where
sharing real data is often impractical or impossible
due to legal constraints. These constraints, while
necessary from a privacy perspective, also hinder
collaboration. While our studies cannot fully ascer-
tain the safety of the synthetic corpora, the results
indicate that they are less sensitive than the original
data. When combined with other safety measures,
such as de-identification and secure storage, syn-
thetic data can serve as a basis for collaboration
across institutional boundaries.

7 Limitations

The results demonstrated the importance of adapt-
ing the synthesizing LLM to the clinical domain
in order to generate high-utility training data. For
synthesizing corpora for PII detection, this was
possible to do with very small amounts of data.
However, it may be the case that PII detection is a
task where the domain-specific details of the data
are less important. Indeed, Libbi et al. (2021) ar-
gue that NER data, in general, retain their utility
for machine learning even if, qualitatively, their
contents lack coherence. In future work, it would
be interesting to investigate if the same holds for
clinical tasks that are more challenging and domain-
specific tasks. Nevertheless, PII detection in the
clinical domain is an important task in itself and
any advances in this area will help to combat the
issue of data scarcity.

Our process for synthesis also uses autoregres-
sive language modeling without instruction-tuning.
We opted for this design to make the task as simple
as possible. As previously mentioned, this may
not necessarily be a good design for other types
of tasks where the document-level semantics mat-
ter more. For example, Kiefer (2024) synthesized
data for the task of assigning diagnosis codes to
discharge summaries by instruction-tuning models
to create documents with different characteristics.

Another limitation of the study is the reliance
on n-gram-based metrics for estimating privacy
risks. This is a common practice (Ive et al., 2020;
Hiebel et al., 2023) and can detect when data are
being reproduced verbatim in the synthetic corpora.

On the other hand, n-grams vary greatly in how
sensitive they are. We try to address this with our
n-gram recall metric that takes PII into account.
However, we make limited claims about the privacy
of the data and instead direct our focus towards
their utility.

In Section 4.4, we find that smaller versions
of the generative models could generate data of
near-equal utility as their larger counterparts. This
was especially clear when generating MEDDO-
CAN data. An interesting continuation would have
been to fine-tune an even smaller LLM using MED-
DOCAN data. Unfortunately, there is no smaller
FLOR model than the 1.3 billion version that we
use. GPT-SW3 is available in smaller versions, but
proceeding to a monolingual analysis would lower
the validity of the results and fell outside the scope
of this study. Future work could try similar exper-
iments with languages for which smaller models
exist.

8 Ethical statement

This work was conducted under ethical permission
no. 2019-05679 granted by Swedish Ethical Re-
view Authority. MEDDOCAN is a publicly avail-
able dataset, where the PII in the documents are un-
related to the original patients. SEPR PHI is avail-
able on request and is a manually pseudonymized
corpus where all identified PII have been replaced
with surrogate values. Because of this, the privacy
risks of the experiments in this paper are very small.
Regardless, the experiments have been carried out
in a computational environment in which only the
authors and system administrators have had access
to the data. Our experiments are also in accordance
with the intended uses of the datasets.

The experiments conducted in this paper re-
quired considerable amounts of computational re-
sources. We estimate that creating and evaluating
the data and models for our experiments took ap-
proximately 130 GPU hours3. Luckily, the compu-
tational infrastructure on which the experiments ran
is located in a country where virtually all energy
comes from sustainable sources. Nevertheless, the
electricity expended when conducting these experi-
ments could have been directed toward alternative
purposes.

On the other hand, our results indicate that high-
utility synthetic corpora can be created using small-
scale data and without relying on the very largest

3The calculations are available in Appendix C
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LLMs. These results can be particularly helpful for
researchers working in resource-constrained envi-
ronments. This includes not only researchers in,
e.g., the clinical domain, but also those working
with low-resource languages. These parts of the
NLP community are often under-served as increas-
ing focus is placed on terabyte-scale datasets and
LLMs with unwieldy parameter sizes.

There are other strong ethical benefits of con-
ducting this study. Training models using synthetic
corpora is safer than using real data, but is no
panacea. On the other hand, no currently exist-
ing technique for privacy preservation is sufficient
when used in isolation. For example, NER-based
automatic de-identification covers only a subset of
PII (Pilán et al., 2022), and differentially private
learning for NLP is difficult to implement properly
(Brown et al., 2022; Miranda et al., 2024) and is
often inefficient when done so (Igamberdiev et al.,
2024). Synthetic data generation will likely be an
important ingredient in many domains to overcome
privacy issues.

There is a risk that other researchers over-
interpret our results and use them to justify irre-
sponsible uses of synthetic data. Our focus on
constraining the amounts of data used hopefully
mediates some of these potential risks. Further-
more, we have been clear in the limitations of our
results and clearly defined the scope of our experi-
ments.
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A Hyperparameters and software
versions

Both GPT-SW3 and FLOR were fine-tuned using
the hyperparameters in Table 8. These were se-
lected based on examples from prior works and
through small-scale experiments. SweDeClin-
BERT and FLOR were also trained using the same
hyperparameters, listed in Table 9. These param-
eters were also selected based on examples from
prior works. Due to the many different factors in
our synthesis process, a full search of the hyperpa-
rameter space was not feasible. The hyperparam-
eters used in the experiments proved sufficiently
optimized to obtain high-utility models and clear
results.

Parameter Value

r 8
α 32
Dropout 0.05
Weight decay 0.1
Learning rate 0.0001
Batch size 16
Epochs 6

Table 8: The hyperparameters used for domain-adapting
the generative LLMs using QLoRA.

Parameter Value

Weight decay 0.00001
Learning rate 0.0001
Batch size 16
Epochs 6

Table 9: The hyperparameters used when fine-tuning
the BERT/RoBERTa models for NER.

We also used several Python libraries to imple-
ment our experiments. The most important ones are
NLTK (version 3.8.1) for stemming when comput-
ing diversity, vLLM (version 0.6.1) for synthesis,
Axolotl (version 0.6.0) for domain adaptation (ver-
sion 0.6.0), and Huggingface Transformers (ver-
sion 4.44.0) for fine-tuning the NER models and
for tokenizing the corpora before counting n-grams.

B 3-grams and 10-grams

As mentioned in Section 4.7, we calculated the n-
gram overlaps for n = 3, 5, 10. Results for n = 3
are listed in Table 10 and n = 10 in Table 11. The
results follow the same overall pattern as in Table
7 but are included for completeness. As expected,
3-grams are much more likely to occur in both
corpora and 10-grams a lot less likely. Many 3-
grams – due to subword tokenization – are not full
words. In the main part of the paper, we chose
to present 5-grams because this struck a balance
between what prior studies have used, and the fact
that the models we study use sub-word tokenizers.

C Computational requirements

The experiments in this paper consumed many
GPU hours due to the large number of configu-
rations required for the ablation study. The GPUs
were provided by National Academic Infrastruc-
ture for Supercomputing in Sweden. Unfortunately,
the environment offers no straightforward way of
computing the GPU hours. In this appendix, we
estimate the GPU hours required to run the experi-
ments based on data from the logs.

Domain-adapting the FLOR 6.3B model and syn-
thesizing the corpora, for all amounts of domain-
adaptation considered in this paper, took 7.5 hours.
Domain-adapting GPT-SW3 took 10 hours. Both
these processes used four Nvidia A100 GPUs and a
total of 70 GPU hours.

The encoder NER models were trained using sin-
gle Nvidia V100 GPUs. Training the SweDeClin-
BERT models on one 95% portion of the data took
approximately 6 minutes. Training roberta-base-
bne on 95% of a MEDDOCAN fold took approx-
imately 5 minutes. Based on other logs for other
configurations, the time scales linearly with the
amount of data. Based on this assumption, the
models presented in this paper took an additional
60 GPU hours to train.
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% for d.a. SEPR PHI MEDDOCAN

All 3-grams Sensitive 3-grams All 3-grams Sensitive 3-grams

5% 0.583 ± 0.040 0.540 ± 0.061 0.066 ± 0.003 0.072 ± 0.006
25% 0.436 ± 0.019 0.426 ± 0.022 0.031 ± 0.000 0.039 ± 0.001
50% 0.365 ± 0.028 0.358 ± 0.033 0.026 ± 0.000 0.037 ± 0.001
95% 0.331 ± 0.018 0.321 ± 0.018 0.021 ± 0.000 0.034 ± 0.001

0% 0.180 ± 0.011 0.179 ± 0.007 0.019 ± 0.000 0.026 ± 0.001

Table 10: 3-gram recall values were calculated for each synthetic corpus. The values are averages and standard
deviations over five folds.

% for d.a. SEPR PHI MEDDOCAN

All 10-grams Sensitive 10-grams All 10-grams Sensitive 10-grams

5% 0.294 ± 0.019 0.040 ± 0.016 0.000 ± 0.000 0.000 ± 0.000
25% 0.137 ± 0.005 0.033 ± 0.008 0.000 ± 0.000 0.000 ± 0.000
50% 0.082 ± 0.008 0.022 ± 0.006 0.000 ± 0.000 0.000 ± 0.000
95% 0.052 ± 0.007 0.022 ± 0.004 0.000 ± 0.000 0.000 ± 0.000

0% 0.001 ± 0.000 0.002 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table 11: 10-gram recall values were calculated for each synthetic corpus. The values are averages and standard
deviations over five folds.
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